The fuzzification of an information architecture
for information integration

Rico A.R. Picone'2, Jotham Lentz"2, and Bryan Powell?

! Department of Mechanical Engineering, Saint Martin’s University
2 Dialectica, LLC

Abstract. We present a new information architecture based on one re-
cently introduced to structure categorized but otherwise unstructured
information. The new architecture is based on fuzzy set theory subset
operations that define graph theory nodes. Two types of graph edges
are defined such that a user interface based on this architecture can
logically minimize the number of visible navigable edges and atoms of
information. This minimization is understood to be one of the primary
advantages of the architecture for human-computer interaction due to
its mitigation of information overload. The advantages of hierarchical,
organic, and sequential information architectures are fused by the new
architecture and the dialectical method is also integrated—all of which
are intended to enhance human-computer interaction. The new architec-
ture can easily incorporate quantitative information, which can be con-
verted into a fuzzy set theory representation with fuzzy clustering and
other techniques. Moreover, traditionally qualitative information such as
narrative, audio, and video, although naturally represented with crisp
sets, can be represented with fuzzy sets. Therefore, the new architecture
can fuse traditionally disparate types of information.

1 Introduction

Memory is recategorization. This identity is supported by recent neuroscience,
psychology, and artificial intelligence research [4,16,14], and even if the provoca-
tive identity is not strictly true, it provides insight into the memory; as Rosenfield
puts it:

We can recognize paintings of Picasso as well as adept imitations of
Picasso. When we recognize a painting we have never seen as a Picasso
or as an imitation, we are doing more than recalling earlier impressions.
We are categorizing: Picasso and fakes. Our recognition of paintings or
of people is the recognition of a category, not of a specific item. People
are never exactly what they were moments before, and objects are never
seen in exactly the same way. [16]

3 Quoted from Pfeifer [14, pp. 311-12].

Memory plays a central role in intelligence; furthermore, the computer’s relative
stability of memory is one of its most promising features for the enhancement
of intelligence, be it artificial or human. For these reasons, computers have long
used forms of categorization to store and present information: the two most
striking architectures are the venerable hierarchy and the organic tag-based sys-
tems. The authors have previously presented an information architecture—the
dialectical architecture—with a structure explicitly designed to incorporate the
advantages of each of these [15]. In the present work, we fuzzify this archi-
tecture in order to include information best categorized in each category to a
certain degree—that is, fuzzily categorized information. This type of information
is especially important in applications such as robotics in which sensor informa-
tion is quantitative. Well-established techniques such as fuzzy clustering [13,6]
and direct assignment of membership functions can assign each atom of infor-
mation fuzzy categories (sets). The architecture is developed as a method for
human-computer interaction to enhance human intelligence through integrating
disparate types of information—narrative, audio, video, and now quantitative
data—into a single representation fundamentally based on categorization. We
believe beginning with human intelligence enhancement (a worthy application)
may provide insight into artificial intelligence development as well.

The fuzzy dialectical architecture, like the “crisp” dialectical architecture,
unites three information “planes.” The first is the structure plane, which is built
from fuzzy set operations that define relations among nodes defined by category
(set) intersections. The second is the flow plane, which allows information to be
distributed through the structure in a sequential fashion. Flows can represent
many types of information: narrative, audio, video, and data streams. The third
and final plane is the dialectic plane, which provides a mechanism for flows to
evolve within the framework of thesis—antithesis—synthesis. Together, these three
planes comprise the fuzzy dialectical architecture, as will be described in detail in
Sec. 2, which especially focuses on the fuzzification of the dialectical architecture.
In Sec. 3, algorithmic considerations are explored. The human interface and a
specific instantiation are described in Sec. 4.

2 Fuzzifying the dialectical architecture

The dialectical information architecture was introduced as a way of enhancing
human intelligence by a synthesis of structure, flow, and dialectic. These tele-
ological foundations remain intact and the methodology has been developed to
include an additional type of information, that which is quantitative. The pri-
mary tool for this is fuzzy set theory, with which quantitative information can be
interpreted qualitatively in the form of categories. The original or “crisp” archi-
tecture defined its structure from crisp set theoretic relations from unstructured
categorized information; in this section, the structure of the fuzzy architecture
will be defined from fuzzy set theoretic relations from unstructured (fuzzily)
categorized information.

Consider a collection of data, each member of which we call an atom. Each
atom is associated to a certain degree with a collection of categories which are
represented as fuzzy sets. Crisp set operations union U and intersection N are
analogous the fuzzy set operations union and intersection [17,25]. We exploit
this analog to define the fuzzy dialectical architecture in a way similar to the
definition of the crisp dialectical architecture, which made much use of the crisp
set operations.

The fuzzy structure is, as its crisp analog, a directed graph of nodes and
edges [21,2]. Other than the “universal” union node, which contains all atoms,
every node in the graph represents the fuzzy intersection of a collection of cat-
egories (fuzzy sets). Just as an atom can belong to a given category with mem-
bership value in the interval [0, 1], with zero meaning “no” membership and
unity meaning “full” membership, so an atom can belong to a given node to a
certain degree (membership value). This degree is computed from the fuzzy in-
tersection operation, which returns the minimum membership value for a given
atom shared between two nodes; i.e. let the element x in the universe X have
membership pa(z) in fuzzy set A, where p4 is the membership function for set
A, let x have membership pp(z) in fuzzy set B with membership function up,
and let A be the operator that takes the minimum of its two arguments—then
the membership of = in the fuzzy intersection AN B is [17]

pranp(x) = pa(z) A pp(z). (1)

Directed edges connect the nodes to generate a natural hierarchy. All edges
are defined by has a priori subcategory relations or s-relations; for instance, the
node AN B is an a priori subcategory (fuzzy subset) of fuzzy sets A and B.
This generates a natural hierarchy with graph levels defined by the number of
categories that intersect to define the node; e.g. node A N B has level two.

Two types of s-relation are defined: the suggestively named (1) has visi-
ble a priori subcategory or vs-relation and (2) has hidden a priori subcategory
or hs-relation. The definition of the hs-relation first requires the concept of a
metacategory. A “minimal” metacategory for a given node is a collection of sub-
categories that contain as a subset all atoms associated with the node. A node’s
vs-relations are those that have tails connected to the node and heads con-
nected to subcategory nodes contained in a minimal metacategory. By minimal,
we mean containing the minimum number of subcategories to fully contain all
atoms. An hs-relation is defined as any s-relation that is not a vs-relation.*

Finally, atoms themselves can be either “visible” or “hidden,” names sug-
gestive of how the user interface in later sections will be defined. An atom is
visible at a given node if and only if it has nonzero membership in all categories
intersected to define the node and zero membership in all others. This definition
requires that an atom be visible in one and only one node in the structure.

* These definitions have strong parallels in [15], where more mathematically oriented
definitions are presented. We favor a narrative approach here. The interested reader
may find the explicit mathematical definitions of the previous work elucidating.

2.1 Visibility and hiddenness

The names given to the two types of atoms and s-relations—“visible” and “hidden”—
are a crucial aspect of the structure’s advantage for intelligence amplification in
human-computer interaction. In a user interface (one instantiation to be dis-
cussed in Sec. 4), these signifiers will be taken literally: at a given node, hidden
atoms and hidden s-relations (edges) will not be presented to the user. The def-
inition of each guarantees that a hidden atom will be visible if one navigates
via visible s-relations to a lower level. The primary advantage of this from a
usability standpoint is that the user is not inundated with as much information,
one of the key aspects of a hierarchy, while remaining in a logically categorized
structure—the other key aspect of a hierarchy.

2.2 Structure as estimation

Let us consider what type of structure this graph has. It is constructed from a
collection of fuzzily categorized atoms (in the case of quantitative information,
these atoms are data points with membership values in each category). For a
given variable, say temperature, the subset relationships are pre-defined by the
membership function of the data; e.g. “luke-warm” will be a subset of “warm.”
However, the inter-variable relationships are typically not so; for instance, “cold”
might be a subset of “high-pressure.” The structure defined here can be under-
stood as an estimation process for these relationships, one of several applications
to be discussed in later sections.

2.3 Organic hierarchy

The term organic hierarchy was introduced when defining the crisp dialectical
architecture [15], and it still applies to the fuzzy architecture. It is “organic”
in the sense that it evolves with each new atom’s introduction to the structure.
Unlike a traditional static hierarchy that requires insertion into the structure at a
specific node, an organic hierarchy evolves with the information, and a user need
not explicitly define the hierarchy, which is implicit in the user’s categorization
of each atom.

2.4 Invariance of path

Another aspect of the crisp architecture that ports almost directly to the fuzzy
architecture is that of the invariance of path—that is, the fact that navigation of
the structure is invariant to the order in which one navigates. Let us represent
each navigation along a vs-relation as the “selection” of the additional category
for the intersection that defines the edge’s head node. Let each selection add
that category to the path, similar to a traditional file system path (e.g. /A/B/C).
For the dialectical architecture, the order of the selection is inconsequential; for
instance, /A/B/C, /B/A/C, and /C/A/B all point to the same node, due to the
invariance of the fuzzy intersection operation.

2.5 Fuzzy flows

The concept of a flow was introduced in the context of the crisp dialectical ar-
chitecture [15]. It’s definition—a flow is a series of atoms—applies directly to the
fuzzy dialectical architecture, but unique implications emerge. Previously, flows
have been used to represent the sequential aspect of several types of information,
such as narrative, audio, and video. In a fuzzy dialectical architecture represent-
ing quantitative information, each data point is an atom and a data stream is a
flow. Thus each atom should not be presented to a user as an isolated data point
at each node, but should be displayed in a plot (more on plotting in Sec. 4) with
a trace representative of a flow. This yields an additional method of navigation,
as well. A flow may intersect a node and continue on another node; the user
should be able to “follow the flow” to the other node in addition to navigating
the categorical structure directly, via edges.

2.6 Fuzzy dialectic

The Fichtean dialectic is the evolution of understanding. It is often represented
as a position taken, a thesis; an alternative position taken, an antithesis (not
necessarily in conflict with the thesis); and a sublation of the two to form a
synthesis [9].> Fichte goes so far as to claim that every act of thinking is a
synthesis [10], and so it is natural for an information architecture designed to
enhance human thinking to express this model.

The crisp dialectical architecture includes a special type of flow to express
the dialectic called the thesis flow, which also applies to the fuzzy dialectical
architecture (and it is this aspect that is its namesake). A thesis flow is defined
for each node and can be considered to be a user’s description of the intersection
of the categories defining the node. When another flow intersects a thesis flow,
it is considered an antithesis flow to the thesis. A user would then be prompted
to resolve these to form a newly informed thesis. But flow intersections are in
fact not limited to thesis flows, so each intersecting flow is an antithesis to a
given flow. This dialectical manner can have many instantiations; for instance,
consider a thesis flow for the node A N B (the relationship between A and B).
Perhaps a user has written a document comprising this thesis flow, and then
brings in a new quantitative data set such that the flow it defines intersects
A N B. The thesis flow would then require the sublation of the thesis and the
antithesis (data). In this way, when newly connected information is introduced
to the information system, those flows that are affected can be immediately
identified.

3 Algorithmic instantiation of the structure

A naive approach to writing an algorithm to instantiate the fuzzy dialectical
architecture would yield exponential computation time. In this section, we dis-

® See Ref. [9] for a discussion of the similarities and differences between the Fichtean
and Hegelian dialectics.

cuss some salient ideas to consider when instantiating the architecture. A highly
efficient algorithm for the structure remains an open problem, but progress has
been made.

A key insight is that the entire structure need not be recomputed when a new
atom is inserted or removed. This allows us to incrementally build a structure,
which should, of course, be invariant to the order in which atoms are inserted.
This is especially important for real-time applications such as robotics.

What requires recomputation when an atom is inserted? Only the relations
originating at those nodes that are constructed by categories in associated with
the new node need be recomputed. That is, (typically) most of the structure
is untouched by the insertion of a new atom. Furthermore, the visibility or
hiddenness of an atom never needs to be computed because an atom is visible
in only one node, that which is defined by the intersection of all categories
associated with it.

Moreover, any node that is new to the structure requires no structural com-
putation, since all its relations must be vs-relations because no relation can
possibly contain more than the others, since only one atom (the new one) is
at the “bottom” of those paths. This allows extremely quick insertions for new
categories and combinations of categories.

The unavoidably most computationally intensive aspect of the computation
is the re-computation of metacategories for those nodes affected by the insertion
of a new node. It is important to note that once a minimal metacategory has
been found at a given level, no more levels are required.

It is also of note that memory resources can become an issue if the structure
is maintained in memory (especially if metacategories are stored). It is advisable
to use a graph database to persist and access the structure.

4 Human interfacing for the fuzzy architecture

As with any information architecture, the fuzzy dialectical architecture may
have innumerable instantiations. In this section, we describe general guidelines
for these instantiations and present a specific example in Sec. 4.1.

The user should be able to browse nodes like a traditional hierarchy.
The nodes represent the intersection of categories, as they typically do in a
hierarchy or in tag-based browsing. The hierarchy has a long and illustrious
history of value to human thinking [5]. Although the structure is, in fact,
a graph, it will be natural to most users to experience it as a hierarchy.
The “hierarchy” the user interacts with will be organic in the sense that
it may change when new information is added to the system. All the spa-
tial metaphors so valuable to hierarchies will be applicable, like “up” and
“down,” “in” and “out.” At each node, the visible edges should be repre-
sented as single categories—the category that would be intersected with the
current node to yield the lower node.

The user should be presented only visible edges.
“Information overload” has been identified as a significant challenge to our

information age [19,24]. One of the primary advantages of the dialectical ar-
chitecture is that it minimizes the amount of information a user is presented
at each node, much like a traditional hierarchy, which “tucks” the informa-
tion that is further-categorized into lower levels. This means “hidden” atoms
and edges should not be presented, explicitly (although exceptions can be
made, of course). In some instances, hidden atoms, as defined above, might
also be hidden from the user’s view; however, caution is advisable here, since
in some instances, the interface might call for their visibility.

The user should be able to browse “up” to any parent node.

The property of the architecture that the path order is invariant can be
exploited to allow browsing the structure in a manner analogous to the hier-
archical “up-one-level,” but with multiple possibilities. The user can traverse
“up” to any parent node, of which there may be several, unlike in the hi-
erarchy, which allows each node to have only a single parent. This can be
visualized by allowing the user to de-select any selected category along the
path, and not merely the last-selected.

The user should be able to browse by following edges or flows.

Following edges is the structural method of navigating and is isomorphic to
browsing traditional hierarchies. The dialectical architecture adds the ability
to browse along flows as well. A flow can intersect a node for one or more
consecutive atoms, then move to another node. For instance, an article may
be discussing the intersection of several topics, then drill deeper into it with
an additional categorization, which would lead it to a child node. This could
be navigated by “going with the flow,” such that the user continues to see
the series of atoms that comprise the flow.

The user should be able to synthesize newly intersecting flows.

The dialectical aspect of the architecture requires the thesis—antithesis—
synthesis structure of information development. An information attempting
to enhance human thinking should certainly capture the development of that
thinking, which this feature accomplishes. A flow can be “intersected” when
another flow is coincident with a node the flow traverses, and this intersec-
tion may provide a new perspective to the original flow (antithesis). A user
should be able to synthesize the two perspectives such that their information
system remains well-curated.

The user should be able to view quantitative data in graphs.
With the inclusion of quantitative information, the fuzzy dialectical archi-
tecture should have a user interface that presents quantitative information
in a concomitant manner, typically a graph. A data point (atom) that is
visible at a given node may belong to a multivariate data set and belongs to
the node with some membership value in the range [0, 1]. A two-dimensional
graph of given data set intersecting a node is often the best option; the user’s
ability to change which variables are plotted on the abscissa and ordinate

axes is important. Data series should be connected and multiple series on
the same graph should appear with different line properties or colors.%
The user should be presented the membership of an atom in a node.

The fuzziness of the architecture yields an interesting aspect of the informa-
tion: the degree to which each atom belongs to a given node. For quantitative
information, the membership value of each point in the node should be pre-
sented; we suggest opacity of the data point. For other types of information,
several techniques are possible, including sorting, iconic differentiation, color,
and opacity.

We now turn to an example instantiation for demonstration purposes.

4.1 A demonstration

An exemplar set of data was generated for demonstrative purposes as if from
sensors on a balloon deployed to measure atmospheric data at various altitudes.
Each data point consists of four quantities: altitude, air temperature, air pres-
sure, and air density. The Committee on Extension to the Standard Atmosphere
(COESA) [1] has defined a mathematical model used here to synthesize sensor
data. The data points were categorized using fuzzy set theory, parsed with an
algorithm that computes the fuzzy dialectical structure, and presented to the
user. This data set was chosen for demonstration purposes because changes in
air properties with altitude are well-understood.

Simulated sensor data was generated in Python [18] using Scikit Aero [8]. An
objective of this project is to analyze continuous streams of sensor data coming
from scientific robots, so Python was chosen for compatibility with the robotics
simulation environment MORSE [3]. Scikit Aero has the COESA standard at-
mosphere model. In order to simulate sensor variability, the generated data was
randomized with a standard distribution appropriate to the type of data, the
results of which are displayed in Figure 1.

The fuzzy architecture presents data based on relationships between cate-
gories. Quantitative information such as sensor data require preprocessing in or-
der to be actionable by the algorithm. Fuzzy set theory was utilized to categorize
the data. Three categories were defined for each variable by assigning member-
ship functions. For simplicity all modifier categories are titled high, medium,
and low for each variable. Assigning the original data membership in each cat-
egory resulted in each measurement having 16 separate values (four variables
plus membership values in 12 categories). All category membership functions
are triangularly shaped and evenly divided across the data. The Python pack-
age Scikit Fuzzy [7] was employed to generate the membership functions and to
assign a fuzzy membership value to each category for each data point.” Fuzzy
membership functions are visualized in Figure 2.

5 We suggest a designer to make liberal use of the advice given by Tufte [22] for the
visual display of quantitative information.

7 While these categories are adequate for this demonstration, the Scikit Fuzzy package
offers the flexibility to tune membership functions to more accurately align with user

120.0

1.4

1.2
100.0f; ~ Lol%.
— Z i
é’ 80.0 \ & os .
= 60.0 2060 x.
@ ~— .‘f‘;"‘
2 400 p 04 .
£ 200 G 02 g AL,
5. & : & 0.0 1‘,f1.:_‘_'-‘:_'1‘?‘: ‘._Qra:é":
X 9 0.0 -0.2} ™ ..\‘?'r._-’t_’_‘;._ a
-50. -20. -0.4 N
5005 15 30 s 200 15 30 45 0 15 30 45
altitude (km) altitude (km) altitude (km)
(a) (b) (c)

Fig. 1: simulated sensor data. Atmospheric data was generated from the COESA
standard atmosphere model from 0 up to 44 km. Normal distributions simulating
sensor variability applied to altitude, temperature, pressure and density variables

with standard deviations 25 m, 10 K, 1 kPa, 0.1 kg/m?.

1.0 1.0 ,
— Low — Low
— Medium — Medium
0.8+ — High 0.8¢ — High
0.6} 0.6}
0.4} 0.4}
0.2} 0.2¢
0.0% 15 30 45 0-0350 100150 200 250 300

(a) altitude (km) membership functions

1.0 1.0
— Low — Low
— Medium — Medium
0.8} — High 0.8 — High
0.6} 0.6}
0.4} 0.4}
0.2} 0.2}
0-00-0 50.0 100.0 0030 o5 1o

(b) temperature (K) membership functions

(c) pressure (kPa) membership functions (d) density (kg/m®) membership functions

Fig. 2: fuzzy membership functions. Three fuzzy categories for each variable are
evenly distributed across the range of values for that variable.

User interface Although not demonstrative of every aspect of the fuzzy di-
alectical architecture, the user interface we new describe follows the guidelines
described at the beginning of this section (4) to present the atmospheric data
described above. We first consider the data presented at the node defined by the
intersection of two categories: high-temperature and mid-pressure. Atoms hav-
ing a strong association with both of these categories should be most strongly
visible. A screen-capture of the information presented at this node are displayed
in Figure 3a. The opacity of each data point is representative of its membership
in the node. In this instantiation, all graphs present the altitude on the abscissa
and the other variables on the ordinate.® This node from which we begin our
description is displayed in the upper-right corner in green: two categories have
been selected (t_hi intersect p_md) and can be deselected by clicking the “x.”
This node has available to it the edge traversals described by the categories in
purple. Figure 3b shows what the user is displayed when browsing the node
t_hi intersect p_md intersect rho_hi. Note how the display has changed such
that only the data most strongly associated with these three nodes is displayed.
Finally, Figure 3c shows the result of an “up” traversal performed by deselecting
the p_md category.

Implementation considerations To review, sensor data can be processed
by a fuzzy categorization engine, written to a database, read by the fuzzy di-
alectical algorithm, and displayed by a user interface, as shown in Figure 4.
In this instantiation, simulated measurements and their corresponding member-
ship values were written to a PostgreSQL database [20] for later retrieval by
the fuzzy dialectical algorithm. The use of the database separates categorization
from analysis and presentation. This modular hierarchy of simulation, catego-
rization, storage, and retrieval was chosen because it enhances the resiliency
and flexibility of the system. Each module can be run on a different physical
system at a different geographical location depending on the requirements of
the individual implementation. Once continuous streams of data are categorized
and stored, they are no longer time-sensitive, and can be batch-processed by the
fuzzy architecture algorithm.

The fuzzy dialectical algorithm was written in Ruby [23, v 2.4.0] and powers
the user interface, which was built using the Pakyow [12, v 0.11] web application
framework, which features graphs generated by c3.js [11, v 0.4.11]. Future im-
plementations will include flow visualization and traversal disparate data types
(this instantiation shows only quantitative information, but this is incidental
and not an inherent limitation).

selected categories. A user would have the ability to quickly and intuitively define
categories based on data type and origin.

8 In future instantiations, the authors envision allowing the user to select which vari-
able is plotted on each axis.

(nti Jinto Jnmd fphi lpio [l rhoti J rhoto il rhomd Il tio i tmd]

thix p._mdx
3007 1100007 1.4]
280 . 100000 | 7
T e, 90000 1.24
&
2601 80000 % 104 0
L
240 Yo, 70000{ 08 " Fre
M L 60000 ' o
220 L ;
. 50000 | 061 "R’
2004 ; 40000-] 0445 LT
18015 30000 § 02 £ e
160 2 20000 3 1€ b
g 10000 2 e 007 =
140 B @ - 02l 8
) 042 . i 7})
1204 2 altitude (m) a altitude (m) ° altitude (m)
B2 6083 12083 18084 2408% 82 5416 10750 16084 21418 B2 | 5416 10750 16084 21418

(a) user view at node t_ui intersect p_md

ho Jihmd Y p.bi [plo i rhomd Il md]

thix p.mdx rho_hix

3003 1100005 1.47
100000
280 1.8
. 90000 1]
250 A 800004 % 11
70000 *
\ 1.04
240 60000 \
220 50000 ‘ 0.9+
1e 40000 _ 0818
200] & 30000 & 0.7 :E
® 20000 ¢ 062
180+ é 10000 & 05 %
o
160 2 altitude (m) 048 altitude (m) 04438 altitude (m)
82 4752 9422 14093 18763 82 4233 8385 12535 16687 82 ' 4233 8385 12536 16687

(b) user view at t_

ui intersect p_md intersect rho_hi

(hio lihmd [liphi lpio il p.md il rhomd | Lhix rho_hix
3004 110000+ -
. 100000 + 144,
2601 % 900001 %, 189,
< 80000 | & 124 .
2604 . 1 % 1]
700004 ¢ 14
.I
240 60000 % 1.04
230 50000 084 -
e 400004 _ 0848
200 & 300004 £ 0.7 E',
5 20000 06{<
180+ & 10000 2 051
[+
160 g altitude (m) 048 altitude (m) 04438 altitude (m)
0 4691 9382 14072 18763 0 4170 8339 1250016678 0 4170 8339 12509 16678

(c) user view at t_ui intersect rho_hi

Fig. 3: The user interface for the demonstration of the fuzzy dialectical architec-
ture. In Figure 3a, the user begins at node t_ui intersect p_md. In Figure 3b,
the user has traversed “down” to node t_ui intersect p_md intersect rho_hi. In
Figure 3c, the user has traversed “up” to node t_ui intersect rho_hi. Opacity
is a function of the data point’s membership in the node.

. | | wieb
- Server

Mission Dl
Caontral
S _“—‘—D'-I Fuzzy Fuzzy

= Categorization D|alec:1|ca|
Sensor Engl ne ,-dgorlthm
Postg reSQL
Database

Fig. 4: a data flow diagram showing how sensors provide data that can be pro-
cessed by a fuzzy set theory categorization algorithm and stored in a database
to be retrieved by the fuzzy dialectical algorithm and displayed to the user.

5 Conclusion and prospects

What emerges from the information architecture presented herein is a frame-
work for fusing information structure, category, sequence, and dialectic; fusing
the representation of complex information with simple interface; and fusing in-
formation that is quantitative with that which is qualitative. It is an architecture
designed for information integration and intelligence amplification. Applications
include many situations for which traditional architectures have been effective,
yet restrictive. The integration of quantitative information has many applica-
tion, but the authors are developing a human-robot interface based especially
on this aspect of the architecture.

We have presented the methods of fuzzification of the dialectical informa-
tion architecture, algorithmic considerations, human interfacing, and a specific
demonstration of the architecture. The methods employed were motivated by
concepts from neuroscience, psychology, artificial intelligence, and philosophy.
This presentation has been primarily synthetic and lays the groundwork for an-
alytical investigation.

References

1. U.S. standard atmosphere, 1976. Tech. rep., National Oceanic and Atmospheric
Administration and National Aeronautics and Space Administration and United
States Air Force (February 1976)

2. Bondy, A., Murty, U.: Graph Theory. Graduate Texts in Mathematics, Springer
London (2011)

3. Echeverria, G., Lemaignan, S., Degroote, A., Lacroix, S., Karg, M., Koch, P.,
Lesire, C., Stinckwich, S.: Simulating complex robotic scenarios with morse. In:
SIMPAR. pp. 197208 (2012), http://morse.openrobots.org

http://morse.openrobots.org

10.

11.
12.
13.

14.

15.

16.

17.
18.

19.

20.

21.

22.

23.

24.

25.

Edelman, G.M.: Neural Darwinism: The theory of neuronal group selection. Basic
Books (1987)

Garrett, J.: Elements of User Experience,The: User-Centered Design for the Web
and Beyond. Voices That Matter, Pearson Education (2010)

Jain, A.K., Murty, M.N.; Flynn, P.J.: Data clustering: A review. ACM Comput.
Surv. 31(3), 264-323 (Sep 1999), http://doi.acm.org/10.1145/331499.331504
Joshua Warner: Scikit-fuzzy: A fuzzy logic toolbox for scipy, http://
pythonhosted.org/scikit-fuzzy/

Juan Luis Cano: scikit-aero: Aeronautical engineering calculations in python,
https://github.com/AeroPython/scikit-aero

Kaufmann, W.: Hegel: A Reinterpretation. A Doubleday Anchor book, Doubleday
(1966)

Kroeger, A.E.: The difference between the dialectic method of hegel and the syn-
thetic method of kant and fichte. The Journal of Speculative Philosophy 6(2),
184-187 (1872), http://wuw. jstor.org/stable/25665792

Masayuki Tanaka: C3.js: D3-based reusable chart library, http://c3js.org
Metabahn: Pakyow: A realtime web framework for Ruby, https://www.pakyow.org
de Oliveira, J., Pedrycz, W.: Advances in Fuzzy Clustering and its Applications.
Wiley (2007), https://books.google.com/books?id=PnOel1xm4YBgC

Pfeifer, R., Bongard, J.: How the Body Shapes the Way We Think: A New
View of Intelligence. MIT Press (2006), https://books.google.com/books?id=
EHPMvOMfgWwC

Picone, R.A., Powell, B.: A new information architecture: A synthesis of structure,
flow, and dialectic. In: Yamamoto, S. (ed.) Human Interface and the Management
of Information. Information and Knowledge Design, Lecture Notes in Computer
Science, vol. 9172, pp. 320-331. Springer International Publishing (2015), http:
//dx.doi.org/10.1007/978-3-319-20612-7_31

Rosenfield, I.: The Invention of Memory: A New View of the Brain. Basic Books
(1988), https://books.google.com/books?id=5e_aAAAAMAAT

Ross, T.: Fuzzy Logic with Engineering Applications. Wiley, third edn. (2011)
Rossum, G.: Python reference manual. Tech. rep., Amsterdam, The Netherlands,
The Netherlands (1995)

Strother, J.B., Ulijn, J.M., Fazal, Z.: Information Overload: An Interna-
tional Challenge for Professional Engineers and Technical Communicators. No.
ISBN 9781118360491, Wiley-IEEE Press (2012), http://ieeexplore.ieee.org/
servlet/opac?bknumber=6354045

The PostgreSQL Global Development Group: Postgresql, https://wuw.
postgresql.org/docs/9.6/static/index.html

Trudeau, R.: Introduction to Graph Theory. Dover Books on Mathematics, Dover
Publications (2013)

Tufte, E.: The Visual Display of Quantitative Information. Graphics Press (2001),
https://books.google.com/books?id=GTd50QEACAAJ

Yukihiro Matsumoto: Ruby, https://ruby-lang.org

Zeldes, N., Sward, D., Louchheim, S.: Infomania: Why we can’t afford to ignore
it any longer. First Monday 12(8) (August 2007), http://firstmonday.org/ojs/
index.php/fm/article/view/1973/1848

Zimmermann, H.: Fuzzy Set Theory—and Its Applications. Springer Netherlands
(2001)

http://doi.acm.org/10.1145/331499.331504
http://pythonhosted.org/scikit-fuzzy/
http://pythonhosted.org/scikit-fuzzy/
https://github.com/AeroPython/scikit-aero
http://www.jstor.org/stable/25665792
http://c3js.org
https://www.pakyow.org
https://books.google.com/books?id=Pn0e1xm4YBgC
https://books.google.com/books?id=EHPMv9MfgWwC
https://books.google.com/books?id=EHPMv9MfgWwC
http://dx.doi.org/10.1007/978-3-319-20612-7_31
http://dx.doi.org/10.1007/978-3-319-20612-7_31
https://books.google.com/books?id=5e_aAAAAMAAJ
http://ieeexplore.ieee.org/servlet/opac?bknumber=6354045
http://ieeexplore.ieee.org/servlet/opac?bknumber=6354045
https://www.postgresql.org/docs/9.6/static/index.html
https://www.postgresql.org/docs/9.6/static/index.html
https://books.google.com/books?id=GTd5oQEACAAJ
https://ruby-lang.org
http://firstmonday.org/ojs/index.php/fm/article/view/1973/1848
http://firstmonday.org/ojs/index.php/fm/article/view/1973/1848

	The fuzzification of an information architecture for information integration

