rldesign Root-Locus design

multd Multiple derivatve compensators

p.1

rldesign.multd Multiple derivaive compensators

Lec. rldesignPD shows how to design a
derivative compensator such that the
compensated root Locus of a control system
can be made to include some test point P € C
where the designer would Llike a. closed-loop
pole (typically to satis§y transient response
requirements). This derivative compensator has
the Sorm

Cp = Kls - =¢)

Sor gainK € R and Zero z¢ € R. The crux oj the

design procedure is to compute via the root
locus phase criterion! the required

compensator phase contribution:
ec =170~ ZC:H('LI))

Sor open-Loop transSer junction GHls). A
trigonometric analysis shows that, or

0¢ € [-t, 7], the compensator zero must be

Zc = Rey) - Im()/ tan Oe.

The obvious Limitation here is that i§ the
reguired compensation B¢ is beyond +, the
derivative compensator of £g. 1 cannot
contribute su§icient phase. The strategy we
adopt here is to augment the derivative
compensator to include as many (equal) zeros

as we need.:
Cr =Kls-zn)",

where zn s o Zero 0§ multiplicity m. We call
this o multiple derivatve compensator or
m-derivave compensator.

How do we select the compensator zero =z, and

multiplicity m Sor a given 0.7 First, we

11. The phase criterion was def§ined in Lec. rlocus.def, £4. .

multiple derivauve compensator

Algorithm nmultd.l the multiple
compensator algorithm.

derivatve

Sunction d_comp_m(w, GH(s))

0c « - ZGHW) © required phase comp
m « ceiling(8c/7) > Zeros needed
O < Oc/M > divide contributions

Zn < Re[) - Im(p)/ ton B
Cl sz
K < |ChlpICHA)| ™
C < KnC/,
return C,

end Sunction

> trig
> cOMp sans gain
> angle criterion
> comp with gain

rldesign Root-Locus design

exe Multiple derivaive compensators p.1

determine m by determining how many 7 (or -7
contributions are requtredzlg'ls

4]

With this, we can divide-up the the required
phase contribution 8¢ among the m zeros:

em = ec/m.

By construction, 6 € -7, 7], so the compensator
Zeros should be located at

Zm = Re() - Im()/ tan Op.

This is summarized in Algorithm multd.L.

Causality

A complication can arise when derivative
compensation yields o closed.-loop transjer
Sunction with more zeros than poles—a type of
system called non-causal (non-non-causal
systems are called causal). Non-causal systems
are those that depend on §uture states,
something cLogschoJJLgH tmpossible to instantiate
in real-time, and therejore a controller that
creates such a control system is 0§ no practical
use!> Adding multiple zeros to a controller

can easily yield such undesirable systems.

To mitigate this, we can include t pure
integrators 1/s into the compensator. They will
obviously aSfect the root Locus, so their
eS§ects must be taken into account during the
Zero compensator calculations. This is done by
treating the open-loop transer Sunction as i§ it
already had the compensator integrators 1/s.
Algorithm multd.Q summarizes this approach.

1. The Sunction [-] is called the ceiling Sunction and rounds up to the
nearest integer.

13. Note that i§ 6 € [-7t, 7], the multiplicity m = 1 and the compensator
is a regular derivative compensator.

non-causal

causal

14. It gets complicated when considering relagvity and gquantum
mechanics, which we do not, here.

15, Non-causal system models are use§ul Sor digital signal post-
processing, but these are always a posteriori-ie. “Suture” time is known
because it is in the analytic past. Controllers do not have this luxury.

Algorithm nmultd.2 the multiple derivative
compensator algorithm with v integrators.

Sunction d_comp_m(, GH(s), 1)
0 + m- ZGHW)/s* > required phase comp
m < ceiling(8¢/m) > Zeros needed
O < Oc/m > divide contributions
Zn < Re() - Im(p)/ ton B > trig
Cpy (s-zm)"/st > cOMp sans gain
K [CLplcHGw)| ™
C 4 KiClr
return C,

end Sunction

> angle criterion
> comp with gain

