
rldesign Root-locus design multd Multiple derivative compensators p. 1

11. The phase criterion was defined in Lec. rlocus.def, Eq. 6.

multiple derivative compensator

Algorithm multd.1 the multiple derivative

compensator algorithm.

function d_comp_m(ψ, GH(s))

θc ← π – ∠GH(ψ) . required phase comp

m← ceiling(θc/π) . zeros needed

θm ← θc/m . divide contributions

zm ← Re(ψ) – Im(ψ)/ tan θm . trig

C′m ← (s – zm)m . comp sans gain

Km ←
∣∣C′m(ψ)GH(ψ)∣∣–1 . angle criterion

Cm ← KmC
′
m . comp with gain

return Cm
end function

rldesign.multd Multiple derivative compensators

Lec. rldesign.PD shows how to design a

derivative compensator such that the

compensated root locus of a control system

can be made to include some test point ψ ∈ C
where the designer would like a closed-loop

pole (typically to satisfy transient response

requirements). This derivative compensator has

the form

CD = K(s – zc), (1)

for gain K ∈ R and zero zc ∈ R. The crux of the

design procedure is to compute via the root

locus phase criterion11 the required

compensator phase contribution:

θc = π – ∠GH(ψ) (2)

for open-loop transfer function GH(s). A

trigonometric analysis shows that, for

θc ∈ [–π,π], the compensator zero must be

zc = Re(ψ) – Im(ψ)/ tan θc. (3)

The obvious limitation here is that if the

required compensation θc is beyond ±π, the
derivative compensator of Eq. 1 cannot

contribute sufficient phase. The strategy we

adopt here is to augment the derivative

compensator to include as many (equal) zeros

as we need:

Cm = K(s – zm)
m , (4)

where zm is a zero of multiplicity m. We call

this a multiple derivative compensator or

m-derivative compensator.

How do we select the compensator zero zm and

multiplicity m for a given θc? First, we

rldesign Root-locus design exe Multiple derivative compensators p. 1

12. The function d·e is called the ceiling function and rounds up to the

nearest integer.

13. Note that if θc ∈ [–π,π], the multiplicity m = 1 and the compensator

is a regular derivative compensator.

non-causal

causal

14. It gets complicated when considering relativity and quantum

mechanics, which we do not, here.

15. Non-causal system models are useful for digital signal post-

processing, but these are always a posteriori—i.e. “future” time is known

because it is in the analytic past. Controllers do not have this luxury.

Algorithm multd.2 the multiple derivative

compensator algorithm with ι integrators.

function d_comp_m(ψ, GH(s), ι)

θc ← π – ∠GH(ψ)/sι . required phase comp

m← ceiling(θc/π) . zeros needed

θm ← θc/m . divide contributions

zm ← Re(ψ) – Im(ψ)/ tan θm . trig

C′m ← (s – zm)m/sι . comp sans gain

Km ←
∣∣C′m(ψ)GH(ψ)∣∣–1 . angle criterion

Cm ← KmC
′
m . comp with gain

return Cm
end function

determine m by determining how many π (or –π)

contributions are required:12,13

m =

⌈
|θc|

π

⌉
. (5)

With this, we can divide-up the the required

phase contribution θc among the m zeros:

θm = θc/m. (6)

By construction, θm ∈ [–π,π], so the compensator

zeros should be located at

zm = Re(ψ) – Im(ψ)/ tan θm. (7)

This is summarized in Algorithm multd.1.

Causality

A complication can arise when derivative

compensation yields a closed-loop transfer

function with more zeros than poles—a type of

system called non-causal (non-non-causal

systems are called causal). Non-causal systems

are those that depend on future states,

something classically14 impossible to instantiate

in real-time, and therefore a controller that

creates such a control system is of no practical

use.15 Adding multiple zeros to a controller

can easily yield such undesirable systems.

To mitigate this, we can include ι pure

integrators 1/s into the compensator. They will

obviously affect the root locus, so their

effects must be taken into account during the

zero compensator calculations. This is done by

treating the open-loop transfer function as if it

already had the compensator integrators 1/sι.

Algorithm multd.2 summarizes this approach.

