
Moments, couples, and basketballs

Although we are focusing on static bodies in this class, we should 
keep in mind how a rigid body can move in space. We say that an 
object has six degrees of freedom:
translation in three directions (e.g. x, y, and z) and
rotation in three directions (e.g. about x, y, and z).

We know that, in order to get the rigid body to move, we must apply 
forces. Each point on the body will respond to these forces according 
to Newton’s second law:

Since the body is rigid, each point is constrained relative to the 
others. For instance, on a Spalding basketball, the letters do not 
move relative to each other.
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When we assume a body is rigid, we assume internal forces will 
maintain those constraints. For the basketball, we assume the rubber 
and leather and air pressure inside maintain the same relative posi-
tions of the letters “p” and “n”. That is, they transmit forces -- for the 
solid materials, tension and compression -- such that “p” and “n” stay 
in the same relative positions.

I say “relative” positions because, of course, when I spin the ball on 
my finger, both the “p” and the “n” are not “fixed” points. By the way, 
what do we mean by a “fixed” point? In an absolute sense, there is 
no such thing! This is one of the fundamental concepts of mechanics, 
that every motion is relative motion! However, Newtonian mechanics 
requires a so-called inertial coordinate system, which is one that is 
not accelerating. Sometimes we pretend that such a system is 
“fixed,” by which we mean it is taken to be stuck to some point in 
space or some specific body that we will take as being “fixed” (like 
the ground).

From a “fixed” reference, let’s say the floor, in our case, we observe 
when I spin the ball that, while the relative positions of the “p” and the 
“n” are fixed, the positions from our fixed reference surely is not!

Let’s imagine our ball is stationary (relative to some reference point) 
and floating in space sufficiently far away from any planets such that 
no gravity acts on the ball. Newton tells us the ball will remain sta-
tionary until a force accelerates it. Let’s imagine applying such a 
force at a single point, as shown.
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All of the points moved together, rightward. All the internal forces or-
chestrated this movement of all the points, in unison. This is pure 
translation: the body did not rotate!

Now we apply two forces “tangential” to the surface of the ball.

It rotates, but does not translate! It does not translate because the 
external forces sum to zero. But how, then, does it rotate? Each point 
in the ball must follow Newton’s second law, so it must respond to the 
forces applied. Each point “pushes” and “pulls” those around it, ac-
cordingly. In this case, the resulting motion of the rigid body is a pure 
rotational motion about an axis perpendicular to the board, through 
the center of the ball. We call this type of loading that causes rigid 
body rotation a torque. 

If the forces are equal in magnitude and opposite in direction (as in 
our second example), we call these two forces a couple. If they are-
applied to the same point on the rigid body, these forces completely 
cancel and create no torque. In fact, if the are applied colinearly, they 
would cancel and create no torque. But if they are applied in any 
other orientation, they do create a torque. Another word used for 
torque is moment.
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This moment can be considered a rotational analog for force. It is 
beyond the scope of this course to consider the general three-dimen-
sional equations of motion, but if we assume all motion to be in a 
plane, then the rotational analog of Newton’s second law is written

In the static equilibrium case, the general three-dimensional force 
and moment equations can be easily written

It is only barely an exaggeration to say that these two equations are 
pretty much this entire course! 

However, we don’t really yet understand how to use them. Probably 
the most glaring lack in our understanding is this: how can we quanti-
fy what the moment of a given force is? It is to this question that we 
now turn.

A force creates a moment that is generally different for each point P 
in the rigid body. Remember how our couple couldn’t be colinear to 
create a moment? It is this distance between them that is the special 
sauce. Consider the following link loaded with a force F.

Trickery! We have added a net zero force at P, which we can always 
do (just like how we can always multiply by one!), and now we have 
a couple! It turns out that the couple creates a moment that is propor-
tional to the perpendicular distance between the forces. 
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In fact, the expression for the magnitude of the moment about point P 
is simply:

But a moment also has a direction: perpendicular to the plane in 
which the couple resides. So, if the forces are in the x-y plane,

But what if they are in some other plane? There is a mathematical 
operation that simplifies this sort of analysis a great deal: the cross 
product “x”. Let r be the vector from point P to the location the force F 
is applied. Then the moment of F about P is

If we wanted to know how much moment of F is about an axis with 
unit vector u, then we can use another mathematical operator on the 
result: the dot product “ ”:

This is sometimes called the triple product.

We will now take some time to do examples, but before we do, let’s 
consider that if multiple forces are applied at the same point, we can 
say they sum to F and therefore the equations we’ve developed still 
apply!

ge204_2018S_001.ai
5/5


