Syllabus for ME 345

Fall 2017

Course description

This course is an introduction to the mathematical modeling and design of electrical, mechanical, and electro-mechanical systems. A system dynamical approach is used, which allows different energy domains to be modeled within a unified framework. Circuit elements covered include resistors, capacitors, inductors, diodes, transistors, and operational amplifiers. (Adopted from the course catalog.)

General information

Rico AR Picone, PhD
Office Hours
MWF 10–11, 2:20-3 CH 103C

Office location
CH 103C
Classroom location
Cebula Hall 201B
Times (A1)
MWF 9:00–9:50 am
Times (B1)
MWF 11:00–11:50 am
ME 345 Website



Derek Rowell and David N. Wormley. System Dynamics: An Introduction. Prentice Hall, 1997. (Required.)

Paul Horowitz and Winfield Hill. The Art of Electronics. Third Edition. Cambridge University Press, 2015. (Recommended.)


Partial notes will be posted on the Electronics: an introduction and the Dynamic Systems: volume i: electromechanical systems page. They are being constantly updated, but I will let everyone know via Slack when each lecture is ready to be printed. Please print each lecture before class and bring it. There are fill-ins and such.


The following schedule is tentative. All assignments will be set one week before the due date.

week topics introduced reading assignment due
introduction, voltage, current, resistance, signals HH 1.1–1.3
voltage dividers, sources, Thevenin and Norton's theorems, output and input resistance, circuit loading, capacitors, inductors HH 1.4 Assignment #1
circuit analysis HH 1.5, 1.6 Assignment #2
steady-state circuit analysis, impedance HH 1.7, 1.8, & 1.9 Assignment #3
nonlinear circuits, two-port elements, transformers, diodes HH 2.1, 2.2 Assignment #4
MOSFETs, op-amps HH Ch. 3, HH Ch. 4 Assignment #5
systems approach, state-determined systems, energy, power, lumping RW Ch. 1 & Ch. 2 Assignment #6
Midterm #1
electronic elements, mechanical elements, one-port elements and their generalization Ch. 3 Assignment #7
linear graph models, sign convention, element interconnection laws RW Ch. 4 Assignment #8
state equation formulation RW Ch. 5
energy-transducing system elements (e.g. motors) RW Ch. 6 Assignment #9
Thanksgiving week Assignment #10
Midterm #2
system properties and solution techniques RW Ch. 8 Assignment #11
first- and second-order response RW Ch. 9 Assignment #12
first- and second-order response RW Ch. 9 Assignment #13
finals week Final Exam


Assignment #1

Assignment #2

Assignment #3

Assignment #4

Assignment #5

Assignment #6

Assignment #7

Assignment #8

Assignment #9

Assignment #10

Assignment #11


Class resources will be posted here throughout the semester.

Video lectures

Most lectures will be available online on my YouTube channel. I recommend subscribing and familiarizing yourself with the playlist for this course.

Last year’s video lectures can be found here.


Everyone is required to join the messaging service called “Slack.” We’ll use it to communicate with each other during the semester. The Slack team you need to join is called drrico. That’s a signup link.

Homework, quiz, & exam policies

Homework & homework quiz policies

Weekly homework will be “due” on Fridays, but it will not be turned in for credit. However — and this is very important — each week a quiz will be given on Friday that will cover that week’s homework.

Quizzes will be available on moodle each Friday (as early as I can get them up), and must be completed by that evening (before midnight). Late quizzes will receive no credit.

Working in groups on homework is strongly encouraged, but quizzes must be completed individually.

Exam policies

The midterm and final exams will be in-class. If you require any specific accommodations, please contact me.

Calculators will be allowed. Only ones own notes and the notes provided by the instructor will be allowed. No communication-devices will be allowed.

No exam may be taken early. Makeup exams require a doctor’s note excusing the absence during the exam.

The final exam will be cumulative.

Grading policies

Total grades in the course may be curved, but individual homework quizzes and exams will not be. They will be available on moodle throughout the semester.

Homework quizzes
Midterm Exam #1
Midterm Exam #2
Final Exam

Academic integrity policy

Cheating or plagiarism of any kind is not tolerated and will result in a failing grade (“F”) in the course. I take this very seriously. Engineering is an academic and professional discipline that requires integrity. I expect students to consider their integrity of conduct to be their highest consideration with regard to the course material.

Correlation of course & program outcomes

In keeping with the standards of the Department of Mechanical Engineering, each course is evaluated in terms of its desired outcomes and how these support the desired program outcomes. The following sections document the evaluation of this course.

Desired course outcomes

Upon completion of the course, the following course outcomes are desired:
  1. students will have a clear and thorough understanding of concepts, principles, and methods of modeling mechanical, electrical, and electro-mechanical systems;
  2. students will be familiar with the operation and input and output characteristics of the following electrical circuit elements:
    • resistors,
    • capacitors,
    • inductors,
    • diodes,
    • transistors, and
    • operational amplifiers;
  3. students will understand the designs of basic circuits;
  4. students will be able to model electrical and mechanical systems with a unified modeling technique;
  5. students will be able to construct state-space models (including state equations) of electrical, mechanical, and electro-mechanical systems;
  6. students will be able to analyze the characteristics of system models;
  7. students will be able to solve for first- and second-order linear (time-invariant) system responses;
  8. students will be able to solve for general linear (time-invariant) system responses;
  9. students will understand the larger contexts of electro-mechanical system dynamics, especially with regard to technology development and society; and
  10. students will be able to communicate what they are learning and its broader contexts.

Desired program outcomes

The desired program outcomes are that mechanical engineering graduates have:
  1. an ability to apply knowledge of mathematics, science, and engineering;
  2. an ability to design and conduct experiments, as well as to analyze and interpret data;
  3. an ability to design a system, component, or process to meet desired needs;
  4. an ability to function on multi-disciplinary teams;
  5. an ability to identify, formulate, and solve engineering problems;
  6. an understanding of professional and ethical responsibility;
  7. an ability to communicate effectively;
  8. the broad education necessary to understanding the impact of engineering solutions in a global and social context;
  9. a recognition of the need for, and an ability to engage in life-long learning;
  10. a knowledge of contemporary issues; and
  11. an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice

Correlation of outcomes

The following table correlates the desired course outcomes with the desired program outcomes they support.
desired program outcomes
desired course outcomes 1