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Sources of Steady-State Errors
Steady-state errors arise from three primary sources:
(1) nonlinearities, like backlash in gears -- we won’t explore this one;
(2) disturbances, like those from the environment -- see Nise 7.5; &
(3) input (command) type and the plant dynamics.
We will focus our attention on (3). (2) is similar.

Steady-State Errors for Unity Feedback Systems
It is uncommon for a feedback system to be truly “unity.” However, as 
shown in Nise Section 7.6, nonunity feedback systems can be 
re-written and evaluated in terms of unity feedback counterparts. For 
this reason, we will focus on unity feedback systems.

First we recall the final value theorem. Let f(t) be a function of time 
that has a “final value” f(∞) = limt --> ∞ f(t). Then, from the Laplace 
transform of f(t), F(s), the final value is  f(∞) = lims --> 0 s F(s).

Let’s consider a unity feedback system.

Recall that we call e(t) or (its Laplace transform) E(s) the error. We 
want to know the steady-state error e(∞) = limt --> ∞ e(t). From the final 
value theorem, e(∞) = lims --> 0 s E(s). Now all we need is to express 
E(s) in more convenient terms. For the analysis that follows, we com-
bine the controller and plant: G(s) = G1(s)G2(s).

Given a command R(s) and forward-path t.f. G(s), we could take the
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the limit. However, it’s much easier to use the final value theorem:

We can only explore further given a specific command R(s). Three 
different commands are typically considered canonical. The first is 
now developed in detail, and the results of the other two are given 
below. First, consider a unit step command.

Let’s give Kp a name: the position constant. If Kp is large, the 
steady-state error is small. If Kp is infinitely large, the steady-state 
error is zero. If Kp is small, the steady-state error is a finite constant.

The form of G(s) has implications for Kp. G(s) has a factor 1/sn where 
n is some nonnegative integer. Since we are concerned about what 
happens to G(s) when we take its limit as s --> 0, this factor is of par-
ticular importance. If n > 0, Kp = lims --> 0 G(s) = inf. Notice that we are 
able to know n from the forward-path t.f. G(s) because it is a property 
of the system to which the input is applied. We call the t.f. 1/s an inte-
grator, which is the inverse of the t.f. s, the differentiator.

We needn’t solve for E(s) explicitly, then. All we need to know is the 
command R(s) and the number of integrators in the forward-path t.f. 
G(s) (we call this the system type). The steady-state error for other 
other commands and system type can be derived in the same
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(Nise)

The constants Kv = lims --> 0 s G(s) and Ka= lims --> 0 s2 G(s) are called 
the velocity and acceleration constants, respectively. Collectively, Kp, 
Kv, and Ka are called the static error constants.

Let’s do the following example from Nise. 


