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When we examined the time responses of first- and second-order 
systems, we characterized them by the time constant τ (first-order), 
natural frequency ωn (second-order), and the damping ratio ζ (sec-
ond-order). There are a few other important parameters that charac-
terize the system response of these systems that will be useful in 
designing control systems.

First-order systems

For first order systems rise time Tr is defined as the time for the 
waveform to go from 0.1 to 0.9 of its final value (Nise). For first-order 
systems:

Similarly, the settling time Ts is defined as the time for the response 
to reach, and stay within, 2% of its final value (Nise). For first-order 
systems:

The figure illustrates
these properties for a
unit step response c(t).
(Nise)
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Second-order, underdamped systems with two poles and no zeros 
have four additional parameters that are useful to characterize 
system response.

(1) Rise time, Tr. The time required for the waveform to go from 0.1 of 
the final value to 0.9 of the final value (Nise). There is no closed-form 
solution for the rise time in terms of ζ and ωn, but Fig. 4.16 in Nise 
relates these variables.

(2) Peak time, Tp. The time required to reach the first, or maximum, 
peak (Nise).

(3) Percent overshoot, %OS. The amount that the waveform over-
shoots the steady-state, or final, value at the peak time, expressed 
as a percentage of the steady-state value (Nise).

(4) Settling time, Ts. The time required for the transient’s damped 
oscillations to reach and stay within 2% of the steady-state value 
(Nise).

The figure illustrates
these parameters
for a unit step response
c(t).
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Certain higher-order systems can be approximated as second-order 
systems and can be characterized by the parameters in the preced-
ing section. This includes systems with zeros (in the preceding sec-
tion we assumed the second-order system had no zeros).

These conditions are as follows (Nise):
(1) Higher-order poles are much farther into the left half of the 
s-plane than the dominant second-order pair of poles. The response 
that results from a higher-order pole does not appreciably change the 
transient response expected from the dominant second-order poles.
(2) Closed-loop zeros near the closed-loop second-order pole pair 
are nearly canceled by the close proximity of higher-order 
closed-loop poles.
(3) Closed-loop zeros not canceled by the close proximity of high-
er-order closed-loop poles are far removed from the closed-loop sec-
ond-order pole pair.

Higher-order systems controller design proceeds as follows. (Nise)
(1) Sketch the root locus for the given system.
(2) Assume the system is a second-order system without any zeros 
and then find the gain to meet the transient response specification.
(3) Justify your second-order assumption by finding the location of all 
higher-order poles and evaluating the fact that they are much farther 
from the jω-axis than the dominant second-order pair. As a rule of 
thumb, this textbook assumes a factor of five times farther. Also, 
verify that closed-loop zeros are approximately canceled by high-
er-order poles. If closed-loop zeros are not canceled by higher-order 
closed-loop poles, be sure that the zero is far removed from the dom-
inant second-order pole pair to yield approximately the same re-
sponse obtained without the finite zero.
(4) If the assumptions cannot be justified, your solution will have to 
be simulated in order to be sure it meets the transient response 
specification. It is a good idea to simulate all solutions, anyway.


