
Differential Equations Primer

for SISO linear systems

Rico A. R. Picone
Department of Mechanical Engineering

Saint Martin’s University

August 2018*

Copyright © 2018 Rico A. R. Picone
All Rights Reserved

*Support provided by the Hal and Inge Marcus School of Engineering at Saint Martin’s
University (SMU). The author hereby grants SMU perpetual, internal, educational use to
the content of this document, including the right to modify and distribute it for internal
educational use, but the author retains all copyright ownership and can hereafter use and
modify the material without restriction. SMU is not granted the right to distribute or sell
this material outside SMU.



Contents

01 SISO linear systems 01.1
01.01 Dynamic systems . . . . . . . . . . . . . . . . . . . . . . . . . . 01.1
01.02 Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 01.3
01.03 Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 01.4
01.04 SISO linear systems . . . . . . . . . . . . . . . . . . . . . . . . 01.5

02 A unique solution exists 02.1
02.01 Existence and uniqueness . . . . . . . . . . . . . . . . . . . . . 02.1
02.02 Outlining a solution technique . . . . . . . . . . . . . . . . . . 02.2

03 Homogeneous solution 03.1
03.01 Characteristic equation and its roots . . . . . . . . . . . . . . 03.1
03.02 Repeated roots . . . . . . . . . . . . . . . . . . . . . . . . . . . 03.2
03.03 What have we done? . . . . . . . . . . . . . . . . . . . . . . . . 03.2
03.04 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 03.4

04 Particular solution 04.1
04.01 Method of undetermined coefficients . . . . . . . . . . . . . . 04.1
04.02 Some suggested solution proposals . . . . . . . . . . . . . . . 04.2
04.03 The parenthetical caveat . . . . . . . . . . . . . . . . . . . . . 04.2
04.04 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 04.5

05 General and specific solutions 05.1
05.01 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 05.4

A Answers to exercises A.1



Contents Contents

A.01 Answers to the exercises of Lecture 03 . . . . . . . . . . . . . A.1
A.02 Answers to the exercises of Lecture 04 . . . . . . . . . . . . . A.1
A.03 Answers to the exercises of Lecture 05 . . . . . . . . . . . . . A.1

B Bibliography B.1

8 September 2019, 12:56:31 00 3 3



01

SISO linear systems

In engineering, we often consider the design, mathematical modeling, or
analysis of machines, circuits, biological populations, etc. We call these,
in aggregate, systems. The vast majority of systems we consider are systems

dynamic: they change over time. We can analyze such systems by writing dynamic

mathematical representations of appropriate physical laws.

01.01 Dynamic systems

For instance, a simple machine might have a link pinned and actuated by
a motor at one end, as shown in Figure 01.1. The angle θ of the link might
change with time, depending on the external forces acting on it, which
include the motor torque. We could apply Newton’s laws to describe this
motion.

Assuming the link’s weight creates a moment about the motor shaft
much smaller than the torque T applied by the motor, and letting the link
have mass moment of inertia I about the motor shaft, Newton’s second law
in its angular form yields

What type of mathematical object is this? The derivatives make it
a differential equation with independent variable time t and dependent differentiality

variables (functions of time) θ and T . The derivatives are all ordinary
derivatives and not partial derivatives, so it is an ordinary differential ordinariness

equation (ODE). Let’s assume the torque T applied by the motor is known
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θ

Figure 01.1: a simple machine consisting of a motor and a link.

and that the angle θ is unknown. The unknown dependent variable θ
and its derivatives enter the differential equation linearly, making it a linear linearity

ordinary differential equation.

Box 01.1 Course connections: Differential Equations, Computer
Applications in Engineering

In Differential Equations, you spend a lot of time studying ODEs.
This primer focuses on a specific subset of material from that course
and presents one unified way to solve all such problems. This primer
is, of course, no substitute for the course.
In Computer Applications in Engineering, you learned some funda-
mental numerical techniques for solving ODEs. These techniques
apply directly to the ODEs presented in this primer, which focuses
on analytic instead of numerical solutions.

dynamic
systemsDynamic systems that can be effectively described by such equations

are called linear dynamic systems. Note that many are approximately linear. linear
dynamic
systems

Therefore, we spend a great deal of time analyzing linear dynamic systems.
In fact, early courses in physics and engineering—covering topics going
by names such as mechanics, electronics, and dynamics—mostly consist of
learning physical laws that have precisely this form. We have seen that,
in at least one case (and, in fact, in many others), Newton’s second law
yields a linear system description. In electronics, one can effectively
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describe the voltage-current v-i relationships of discrete components such
as capacitors and inductors with simple differential equations; letting a
capacitor’s capacitance be C and an inductor’s inductance be L:

As we know, circuits often consist of several such components and can
be described by combining these sorts of simple equations to form those
that are more complex.

Box 01.2 Course connections: Physics I, Physics II, Dynamics

In Physics I and Dynamics, you were often applying Newton’s
second law to derive a system of equations. These equations were,
in fact, ODEs!
In Physics II, you performed circuit analyses. Whenever a capacitor
or an inductor were included in the circuit, the resulting equations
were ODEs!

Box 01.3 Course connections: Mechatronics, System Dynamics and
Control, Heat Transfer, Vibration Theory, etc.

In a great many of your Mechanical Engineering courses, you will
encounter linear ODEs. Investing your time in this primer will
pay dividends throughout. Note that more advanced solution
techniques for multiple-input, multiple output (MIMO) systems,
nonlinear systems, and distributed systems described by partial
differential equations are beyond the scope of this primer. Where
such systems arise in the ME curriculum, solution techniques will be
discussed. However, throughout the curriculum, it is often assumed
that you can solve linear ODEs without too much trouble.

01.02 Inputs

These system descriptions in the form linear ODEs often include “depen-
dent” variables (meaning they’re dependent on time) that can be consid-
ered independent of the system’s dynamics. They are therefore prescribed ex-
ternally and “input” to the system, thereby getting their name: inputs. inputs

8 September 2019, 12:56:31 01 3 3
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What is and what is not an input depend on the system definition.
For instance, in our motor-link example, above, we made the nebulous
statement that the motor torque T was “known” and the angle θ was
“unknown.” Stated a bit more precisely, T was taken to be an input, whereas
θwas not. This means the motor itself was not part of the system described
by the ODE. However, we could have included it in the system. This would
mean that T is internal to the system, which would require the application
of additional physical laws to describe its electronic circuitry. The choice
between these two options (and among others) depends on our design and
analytical needs.

A great number of systems of engineering interest have a single input. single
inputIn our motor-link example, our single input was the torque T . In many

electronic systems, a single voltage source supplies external power, and so
is taken to be the system’s single input. Even systems of great complexity
can often be described as single input systems.

When a system has a single input, we will often use u to denote this
variable.

01.03 Outputs

When designing and analyzing a system, certain dependent variables will
be of particular interest. We call such variables outputs. outputs

Often, only a single variable is of interest. In such cases, we say we have
a single output system and we often denote the output with the symbol y. single

outputFor instance, perhaps in our motor-link example we are interested in the
angle θ, which we would then call an output.

It turns out we’re ignoring another class of variable1 that we’ll learn
more about in Mechatronics. For now, let’s assume that we’re interested in
every dependent variable, other than inputs, in our system.

An objection might be raised, here: how can it be that a single output y
can describe the output of many systems if we’re also going to take every
dependent variable as an output? Won’t more variables be required to
describe the dynamics? For instance, if, in the motor-link example, we
take the system to include the motor, we’ll probably need the voltage and
current therein to describe it. Together with θ, that’s three outputs!

It turns out this can be assuaged by algebraic relationships among
the variables. For instance, the current through the motor windings is
proportional to the torque. Through such relationships, we can have our

1Variables of this class are called state variables.
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cake (our single output) and eat most of it (eliminate extra dependent
variables), too. The catch is that the order (highest derivative) of the order

differential equation describing a system typically increases through this
process of variable elimination.

Box 01.4 Course connections: Mechatronics and System Dynamics
and Control

We will learn in Mechatronics that we can express a system’s dynam-
ics as n ∈ N coupled first-order equations or as a single nth-order
equation. In System Dynamics and Control, we’ll learn to solve the
coupled equations. In this primer, we’ll learn to solve the single nth-
order equation.

01.04 SISO linear systems

The result of all this is that we frequently encounter single-input, single- SISO
systemsoutput (SISO) linear systems. The input-output dynamics of all these

systems can be described by the linear ODE with constant coefficients2

ai, bj ∈ R (which include such system parameters as mass and spring
constants, capacitances and resistances, etc.), order n, and m 6 n for
n,m ∈ N0—as:

dny

dtn
+ an−1

dn−1y

dtn−1
+ · · ·+ a1

dy

dt
+ a0y =

bm
dmu

dtm
+ bm−1

dm−1u

dtm−1
+ · · ·+ b1

du

dt
+ b0u. (01.1)

The rest of this primer will take as its primary goal the description of
a solution technique for Equation 01.1. Solutions will be functions y(t) that solutions

satisfy Equation 01.1 in terms of parameters ai, bi and input u(t), only.

2The restriction of the coefficients to temporal constants means we can add the qualifier
“time-invariant” to such systems, which we will do in Mechatronics.
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A unique solution exists

We’re not yet sure if a solution even exists for Equation 01.1, and if it does, existence

if it is unique—meaning it’s the only solution. uniqueness

02.01 Existence and uniqueness

Rather than proving the existence and uniqueness of a solution, we will
simply consider a theorem that states conditions under which existence
and uniqueness do hold. In other words: a unique solution exists, and we’ll
explore the conditions for which this is true.

Let the forcing function f be the “right-hand side” of Equation 01.1: forcing
function

f(t) ≡ bm
dmu

dtm
+ bm−1

dm−1u

dtm−1
+ · · · + b1

du

dt
+ b0u. (02.1)

Theorem 02.1 (existence and uniqueness). A solution y(t) of Equation 01.1
exists and is unique for t > t0 if and only if both the following are specified:

1. n initial conditions

y(t0),
dy

dt

∣∣∣∣
t=t0

, · · · , d
n−1y

dtn−1

∣∣∣∣
t=t0

and

2. a continuous forcing function f(t) for t > t0.

Assuming this theorem can be proved, and it can (Finan, 2018), we need
only the initial conditions and the forcing function to guarantee ourselves
there is a unique solution. Let’s think about what this means in terms of the
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dynamics of a system. In a sense, if we know its initial state and the input
or forcing1 how it will behave for the rest of time is determined. When
I say “in a sense,” I mean that insofar as the system is well-described by
Equation 01.1. The determinist implications of this must be understood to
be approximate and limited in scope. I don’t want to be responsible for
creating a bunch of determinists (Hoefer, 2016).

Note however, that, given initial conditions and forcing, we only know
that a unique solution exists, not what that solution is or how to find it.

02.02 Outlining a solution technique

It turns out that, given a forcing function and no initial conditions, several
potential solutions can satisfy the ODE Equation 01.1; conversely, given
certain initial conditions and no forcing function, several potential solu-
tions satisfy the ODE. It is only when both initial conditions and a forcing
function are given that a unique solution exists. It can be shown (Kreyszig,
2010) that the general solution yg (also called the total solution)—actually a general

solution
yg

“family” of solutions with unknown constants—to Equation 01.1 is equal
to the sum of two solutions that are often relatively easy to obtain:

1. the homogeneous solution yh, another family of solutions, this time to homogeneous
solution
yh

Equation 01.1 with f(t) = 0, and
2. the particular solution yp, which satisfies Equation 01.1 sans initial

particular
solution
yp

conditions.

That is,

yg(t) = yh(t) + yp(t). (02.2)

Methods for deriving homogeneous and particular solutions are the topics
of Lecture 03 and Lecture 04.

The general solution yg is still a family of solutions that all satisfy
Equation 01.1 for a given forcing function f. It only becomes the unique
solution, which we call the specific solution and typically denote simply y or specific

solution(occasionally) ys, once the initial conditions are applied to yg.
The diagram of Figure 02.1 illustrates this solution technique, with each

arrow signifying that the block at its tail is supplied to and precedes the
block at its head. Lectures proceed with the diagram:

1Usually, if we know the input u, it is trivial to apply Equation 02.1 to find the forcing
function f. However, note that u must be differentiable m times.
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Lecture 02 A unique solution exists 02.02 Outlining a solution technique

initial conditions

ODE (Equation 01.1)

forcing function f

hom. sol. yh

par. sol. yp

gen. sol. yg spe. sol. y

Figure 02.1: a diagram of the solution technique. Each arrow signifies that the block at its
tail is supplied to and precedes the block at its head. The first column includes everything
required to obtain a unique solution. The homogeneous yh and particular yp solutions of
the second column sum to the general solution yg. Applying the initial conditions to this
yields the specific solution y.

• Lecture 03 describes how to obtain the homogeneous solution yh from
Equation 01.1 with the forcing function f(t) = 0;

• Lecture 04 describes how to derive the particular solution yp from
Equation 01.1 without the initial conditions for common forcing
functions by a method called undetermined coefficiencts;

• Lecture 05 blows your mind by summing the homogeneous and
particular solutions to obtain the general solution yg; lest we be
accused of dereliction of our duty to appear smarter than Business
majors, this lecture also applies the initial conditions to the general
solution to find constants introduced in the homogeneous solution
to fully solve the differential equation—i.e., to obtain the specific
solution y.

Box 02.1 Course connection: Differential Equations

The technique outlined here is probably quite similar to one de-
scribed in your Differential Equations course. Terminology and no-
tation may be different, so it may be worth correlating this primer
with your previous coursework and text.

8 September 2019, 12:56:31 02 3 3
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Homogeneous solution

The homogeneous solution (also called the complementary solution) to Equa- homogeneous
solutiontion 01.1 is the family of solutions1 that satisfy Equation 01.1 with the forc-

ing function f(t) = 0, but is not restricted by the initial conditions. The
equation is

dny

dtn
+ an−1

dn−1y

dtn−1
+ · · · + a1

dy

dt
+ a0y = 0. (03.1)

What function might solve this, the homogeneous equation? The natural homogeneous
equationexponential with base e is a good candidate, since it is its own derivative.

It turns out that a linear combination (weighted sum) of linearly independent linear
combina-
tion
linearly
indepen-
dent

exponentials2 is the family of solutions we’re looking for.

03.01 Characteristic equation and its roots

It can be shown that, for an exponential function Ceλt with complex C and
λ, the latter must satisfy

λn + an−1λ
n−1 + · · · + a1λ+ a0 = 0, (03.2)

called the characteristic equation. It has n solutions or roots λi. When these characteristic
equation
roots

roots are all distinct—meaning none is equal to another—the homogeneous

distinct
homogeneous
solution

1This family of solutions is actually the general solution of the homogeneous equation,
Equation 03.1. Lest it be confused with the general solution of Equation 01.1, we avoid
calling it this in the following.

2The special case of repeated characteristic equation roots requires a slight modification
of this statement, as we’ll see. In this case, some of the exponentials pick up extra factors.
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solution yh to Equation 01.1 is

yh(t) =

n∑
i=1

Cie
λit. (03.3)

03.02 Repeated roots

If a root is not distinct, it is said to have multiplicity µ equal to the number multiplicity

of its instances. So a root that appears thrice has multiplicity three. This
multiplicity causes the linear combination of exponentials to be degenerate degenerate

or linearly dependent. This is easily remedied, however, by augmenting the linearly
depen-
dent

solution of Equation 03.3 with a polynomial term in t, as follows. Let there
be n ′ distinct roots, each with multiplicity µi. Then the solution is:3

yh(t) =

n ′∑
i=1

µi∑
k=1

Cikt
(k−1)eλikt. (03.4)

Note that, as we would expect, when all roots are distinct, the factor t in
each term has exponent zero, t0 = 1, and we recover Equation 03.3.

03.03 What have we done?

We have found the homogeneous solution to Equation 01.1, which we
know sums with another term to form its general solution. We should
probably consider what this homogeneous solution looks like. It’s a sum of
weighted complex exponential functions of time. Complex solutions to the
characteristic equation, Equation 03.2, always arise in complex conjugate
pairs σ± jω, yielding terms like

This last identity is from a form of Euler’s formula. The result shows us Euler’s
formulathe possible forms of terms in the homogeneous solution. For a real root,

ω = 0 and a real exponential results (note, also, that the 2 goes away).
3We use a double subscript ik, here, meaning the ith distinct root and the kth copy.

Don’t be alarmed: it’s just to make sure there are enough distinct constants. If one prefers,
the constants can be numbered 1 through n, but it’s difficult to write that in summation
form.

8 September 2019, 12:56:31 03 3 2
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For imaginary roots, σ = 0 and a sinusoid results. For complex roots, a
sinusoidal oscillation with an exponential envelope occurs.

Everything we know about the exponential also applies. For instance, if
σ < 0, an exponential decay results, whereas if σ > 0, we get an exponential
growth.

Example 03.03-1 A homogeneous solution

Find the homogeneous solution for the equation

d5y

dt5
+ 14

d4y

dt4
+ 81

d3y

dt3
+ 248

d2y

dt2
+ 408

dy

dt
+ 288y = f(t).
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03.04 Exercises

See Appendix A for answers to the following exercises.
In all the following exercises, find the homogeneous solution yp for

Equation 01.1 with the order n and coefficients ai given.

1. n = 2, a1 = −1, a0 = −2

2. n = 2, a1 = 6, a0 = 9
3. n = 2, a1 = 10, a0 = 34
4. n = 5, a4 = −7, a3 = 32, a2 = −124, a1 = 256, a0 = −192

8 September 2019, 12:56:31 03 3 4



04

Particular solution

What effect does the forcing function f have on the solution? How might
we solve for this effect, called the particular solution? One answer to the particular

solutionlatter question will be given in this lecture: using the method of undetermined
method
of unde-
termined
coeffi-
cients

coefficients. Before we turn to this method, please recognize that other
methods, such as the method of variation or Laplace transforms apply to more
general forms of forcing f (although the integrals that accompany each may
be unknown). When choosing the method of undetermined coefficients,
we limit the scope of applicability to systems subjected to forcing functions
that are complex exponentials (which include sinusoids) or polynomials.
The principle of superposition, discussed in the Mechatronics course, allows
us to construct solutions for linear systems subject to linear combinations
of complex exponentials and polynomials.

04.01 Method of undetermined coefficients

The method is:

1. based on the form of the forcing function, propose an appropriate solu- propose

tion that includes undetermined coefficients (being careful to propose
a solution linearly independent of the homogeneous solution),

2. substitute this proposed solution into the ODE, and
3. determine the undetermined coefficients by solving the algebraic

system of equations that results from equating terms on each side of
the equation.

If there is, in fact, a solution to the algebraic system—that is, for the
undetermined coefficients—our proposed solution is our particular solution,
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f(t) proposed yp(t) test value

k K1 0
ktn Knt

n + Kn−1t
n−1 + ...+ K1t+ K0 0

keλt K1e
λt λ

kejωt K1e
jωt jω

k cos(ωt+ φ) K1 cos(ωt) + K2 sin(ωt) jω

k sin(ωt+ φ) K1 cos(ωt) + K2 sin(ωt) jω

Table 04.1: suggested particular solutions yp(t) (with undetermined coeffi-
cients) to propose for various forcing functions f. Let k, λ, ω, and φ be real
constants and n be a positive integer. Furthermore, let Ki be the undeter-
mined coefficients.

with coefficients now determined. However, if there is no solution,1 our
proposed solution is not our particular solution.

04.02 Some suggested solution proposals

How can one propose a solution? There are no clear answers other than
“be clever or use known solutions.” As remarkably unsatisfying as this
is, we can still rejoice in being let off the hook, since we are certainly
not clever. As mentioned, above, this method only really works if the
forcing function is a complex exponential or a polynomial (but this can
be extended, using superposition, to a large class of problems of interest).
Table 04.1 is provided as a guide, but it essentially boils down to: if f is
a complex exponential, propose that yp is a complex exponential; if f is a
polynomial, propose that yp is a polynomial.

04.03 The parenthetical caveat

The only caveat, here, is the parenthetical warning from the three-step
method about choosing a linearly independent solution. This is a result
of a theorem we have not considered, here, but suffice it to say that, in
order for our general solution to simply be the sum of the homogeneous
and particular solutions, as we will propose in the next lecture, these two

1One should not simply throw up one’s hands at a certain point and declare “there’s no
solution!” Rather, one should prove that there is none.
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must be linearly independent. We will not only skip the details of why this
is the case, but also the details of how to deal with it, opting instead for a
simple recipe. The “test values” in Table 04.1 are to test whether or not the
particular solution is a component of the homogeneous solution. If the test
value is equal to any root of the characteristic equation of multiplicity µ,
then the proposed solution should be multiplied by tµ.

Example 04.03-1 A particular solution

Find the particular solution for the equation

d5y

dt5
+ 14

d4y

dt4
+ 81

d3y

dt3
+ 248

d2y

dt2
+ 408

dy

dt
+ 288y = f(t),

which is the same as that of Example 03.03-1, with

f(t) = a cos(ωt),

with a ∈ R and ω = 5 rad/s.
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04.04 Exercises

See Appendix A for answers to the following exercises.
In all the following exercises, find the particular solution yp for Equa-

tion 01.1 with the order n, coefficients ai, and forcing function f given.

1. n = 2, a1 = −1, a0 = −2, f(t) = 3
2. n = 2, a1 = 6, a0 = 9, f(t) = 5e−3t

3. n = 1, a0 = 2, f(t) = 2 cos(3t)
4. n = 3, a2 = 5, a1 = 16, a0 = 80, f(t) = t+ 2

8 September 2019, 12:56:31 04 3 5
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General and specific solutions

We posited in Lecture 02 that the general solution to the ODE Equation 01.1 general
solutionis

yg(t) = yh(t) + yp(t). (05.1)

We have not and will not prove this, but simply propose it to be the
case. Working through a proof of this from, for instance, your differential
equations textbook is of some value.

So, we already have yh and yp, so finding yg is trivial. What type of ob-
ject is yg? The particular solution contributes only determined coefficients,
but the homogeneous solution contributes n “unknown” constants Ci. This
means yg inherits those constants and therefore is a family of solutions.

This leads us to our final step: applying the initial conditions to find the
specific constants Ci and thereby our specific solution y. specific

solution“Applying” the initial conditions is simply to subject yg to each of them.
For instance, if we have two initial conditions, such as

we construct two algebraic equations

which is a system of algebraic equations from which the two unknown
constants C1 and C2 (from the homogeneous solution) can be solved.
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Example 05.00-1 A general and a specific solution

Find the general solution for the equation

d2y

dt2
+ 5

dy

dt
+ 6y = f(t),

with

f(t) = a cos(ωt),

where a ∈ R andω = 5 rad/s. Apply the following initial conditions
to obtain a specific solution:

y(0) = 3 and
dy

dt

∣∣∣∣
t=0

= 0.
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05.01 Exercises

See Appendix A for answers to the following exercises.
In all the following exercises, find the specific solution y for Equa-

tion 01.1 with the order n, coefficients ai, forcing function f, and initial con-
ditions given. Note that the homogeneous and particular solutions from
Lecture 04 apply to these problems, so they need not be re-derived.

1. n = 2, a1 = −1, a0 = −2, f(t) = 3, y(0) = 2, dy/dt|t=0 = 0
2. n = 2, a1 = 6, a0 = 9, f(t) = 5e−3t, y(0) = 0, dy/dt|t=0 = 0
3. n = 1, a0 = 2, f(t) = 2 cos(3t), y(0) = 4
4. n = 3, a2 = 5, a1 = 16, a0 = 80, f(t) = t + 2, y(0) = 0, dy/dt|t=0 = 1,
d2y/dt2|t=0 = 0
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Answers to exercises

A.01 Answers to the exercises of Lecture 03

Note: the indices of the constants are arbitrary.

1. yh(t) = C1e2t + C2e−t.
2. yh(t) = C1e−3t + C2te−3t.
3. yh(t) = C1e(−5+j3)t + C2e(−5−j3)t.
4. yh(t) = C1e3t + C2e2t + C3te2t + C4ej4t + C5e−j4t.

A.02 Answers to the exercises of Lecture 04

1. yp(t) = −32 .
2. yp(t) = 5

2t
2e−3t.

3. yp(t) = 4
13 cos(3t) + 6

13 sin(3t).
4. yp(t) = 1

80t+
9
400 .

A.03 Answers to the exercises of Lecture 05

1. y(t) = −32 + 7
3e

−t + 7
6e
2t.

2. y(t) = 5
2t
2e−3t.

3. y(t) = 48
13e

−2t + 4
13 cos(3t) + 6

13 sin(3t).
4. y(t) = − 9

1025e
−5t − 9

656 cos(4t) + 619
2624 sin(4t) + 1

80t+
9
400 .
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