
REVIE
W

DRAFT

Chapter 02 Exploring C and mid-level io Lecture 02.02 Exploring C operators

Lecture 02.02 Exploring C—operator precedence and
associativity

Table 02.1 lists all C operators in order of their precedence (highest to
lowest). Operators within the same box have equal precedence.

Note 1—Postfix increment/decrement have high precedence, but the
actual increment or decrement of the operand is delayed (to be accom-
plished sometime before the statement completes execution). So in the
statement y = x * z++; the current value of z is used to evaluate the
expression (i.e., z++ evaluates to z) and z only incremented after all else is
done.

02.02.1 Operator precedence

When an expression contains two or more operators, normal operator
precedence rules are applied to determine the order of evaluation. If two
operators have different levels of precedence, the operator with the highest
precedence is evaluated first. For example, multiplication is of higher
precedence than addition, so the expression 2+3*4 is evaluated as

3 * 4 // = 12
2 + 12 // = 14

The evaluation order can be explicitly controlled using parentheses; e.g.,
(2+3)*4 is evaluated as

2 + 3 // = 5
5 * 4 // = 20

Operators in Table 02.1 are grouped from highest to lowest precedence.

02.02.2 Operator associativity

If two operators in an expression have the same precedence level, they are
evaluated from left to right or right to left depending on their associativ-
ity. For example, addition’s associativity is left-to-right, so the expression
2+3+4 is evaluated as (2+3)+4. In contrast, the assign operator’s associa-
tivity is right-to-left; so the expression x=y=z is evaluated as x=(y=z).

93 24 April 2020, 13:48:08 02.02 3 1

REVIE
W

DRAFT

Chapter 02 Exploring C and mid-level io Lecture 02.02 Exploring C operators

Table 02.1: C operator precedence and associativity.

Operator Description Associativity
() Parentheses (grouping) left-to-right
[] Brackets (array subscript)
. Member selection via object name
-> Member selection via pointer

++ -- Postfix increment/decrement (see Note 1)
++ -- Prefix increment/decrement right-to-left
+ - Unary plus/minus
! ~ Logical negation/bitwise complement
(type) Cast (change type)

* Dereference
& Address

sizeof Determine size in bytes
* / % Multiplication/division/modulus left-to-right
+ - Addition/subtraction left-to-right
<< >> Bitwise shift left, Bitwise shift right left-to-right
< <= Relational less than/less than or equal to left-to-right
> >= Relational greater than/greater than or equal to
== != Relational is equal to/is not equal to left-to-right

& Bitwise AND left-to-right
^ Bitwise exclusive OR left-to-right
| Bitwise inclusive OR left-to-right
&& Logical AND left-to-right
|| Logical OR left-to-right
?: Ternary conditional right-to-left
= Assignment right-to-left

+= -= Addition/subtraction assignment
*= /= Multiplication/division assignment
%= &= Modulus/bitwise AND assignment
^= |= Bitwise exclusive/inclusive OR assignment

<<= >>= Bitwise shift left/right assignment
, Comma (separate expressions) left-to-right

94 24 April 2020, 13:48:08 02.02 3 2

