
REVIE
W

DRAFT

Chapter 03 Digital com. and io Lab Exercise 03: Low-level character io

Lab Exercise 03 Low-level character io

Lab 03.1 Objectives

In this exercise you will gain experience with:

1. The keypad and LCD display.
2. Code requirements for character I/O of a custom embedded comput-

ing application.
3. On-line debugging techniques.

Lab 03.2 Introduction

In this lab you will write the lowest-level routines for character I/O for
our keypad and LCD display. They are the putchar_lcd function and
the getkey function called from getchar_keypad in Lab Exercise 02, as
shown in the following function structure.

double_in (Lab 01) prompts LCD and returns keypad double

fgets_keypad (Lab 02) gets string from keypad

getchar_keypad (Lab 02) gets char from keypad

getkey (Lab 03) gets char from keypad← this lab!

putchar_lcd (Lab 03) prints char to LCD← this lab!

printf_lcd (Lab 01) prints string to LCD

putchar_lcd (Lab 03) prints char to LCD← this lab!

vsnprintf (Lab 01) assigns to formatted string

sscanf (Lab 01) converts ASCII to binary

strstr (Lab 01) find string in string

strpbrk (Lab 01) find member in string

119 24 April 2020, 13:48:08 Lab 033 1

REVIE
W

DRAFT

Chapter 03 Digital com. and io Lab Exercise 03: Low-level character io

Lab 03.3 Pre-laboratory preparation

Two functions, in addition to main, must be written in the exercise.

Lab 03.3.1 Part #1: character output: writing putchar_lcd

The function putchar_lcd puts a single character on the LCD display.
The character may be any in the ASCII code or any of the escape sequences
described in Lab Exercise 01 (\f, \v, \n, \b). The prototype of the
putchar_lcd function is

int putchar_lcd(int value);

where the argument (value) is the character to be sent to the display. If
the input value is in the range [0, 255] then the returned value is also equal
to the input value. If the input value is outside that range then an error is
indicated by returning EOF.

Your version of putchar_lcd will replace that in the me477 library.
Calls to putchar_lcd might be

ch = putchar_lcd('m'); // or
putchar_lcd('\n');

Serial data is sent to the LCD display through a Universal Asynchronous
Receiver/Transmitter (UART). Write the putchar_lcd to perform four
functions:

1. Initialize the UART the first time that putchar_lcd is called.
2. Send a character to the display or send a decimal code to the display

to implement an escape sequence.
3. Check for the success of the UART write.
4. Return the EOF error code, if appropriate. Otherwise, return the

character to the calling program.

The UART must be initialized once before any data is passed to the
display. It is initialized through the Uart_Open function that sets appro-
priate myRIO control registers to define the operation of the UART. The
initialization may be accomplished as shown in Listing 03.1, where uart
(type: static MyRio_Uart) is a port information structure, and the re-
turned value is assigned to status (type: NiFpga_Status). The macros
Uart_StopBits1_0 and Uart_ParityNone are defined in UART.h. You
must #include UART.h in your code.

120 24 April 2020, 13:48:08 Lab 033 2

REVIE
W

DRAFT

Chapter 03 Digital com. and io Lab Exercise 03: Low-level character io

uart.name = "ASRL2::INSTR"; // UART on Connector B
uart.defaultRM = 0; // def. resource manager
uart.session = 0; // session reference
status = Uart_Open(&uart, // port information

19200, // baud rate
8, // no. of data bits
Uart_StopBits1_0, // 1 stop bit
Uart_ParityNone); // No parity

Listing 03.1: initializing the UART.

status = Uart_Write(&uart, // port information
writeS, // data array
nData); // no. of data codes

Listing 03.2: writing to the UART.

Perform this UART initialization just once, and immediately return EOF
from putchar_lcd if status is less than the VI_SUCCESS macro.

Escape sequences, received as the argument of putchar_lcd, control
the cursor position and the function of the LCD display. They are imple-
mented by sending the escape sequences of Table 02.2.

Arguments of putchar_lcd, in the range of 0 to 127, are sent to the
display where they are interpreted as the corresponding ASCII characters.
Other arguments, in the range 128 to 255 are used for special control
functions of this display.

Both escape sequences and ASCII characters are sent to the display
using the Uart_Write function. A typical call would be as shown in
Listing 03.2, where uart is the port information structure defined during
the initialization, writeS (type: uint8_t) is an array containing the data
to be written, and nData (type: size_t) indicates the number of elements
in writeS. Again, return EOF if status is less than the VI_SUCCESS.
Under normal operation (no errors), return the input character to the calling
program.

See Algorithm 5 for putchar_lcd pseudocode.

Lab 03.3.2 Part #2: keypad input: writing getkey

You will write the getkey function, which waits for a key to be depressed
on the keypad, and returns the character code corresponding to that key.

121 24 April 2020, 13:48:08 Lab 033 3

REVIE
W

DRAFT

Chapter 03 Digital com. and io Lab Exercise 03: Low-level character io

Algorithm 5 buffered putchar_lcd pseudocode
function PUTCHAR_LCD(c) . c is ASCII character code

initialize variables . include static int iFirst=1
if iFirst==1 then . first call!

initialize UART (Listing 03.1) . status← Uart_open(...)
if status < VI_SUCCESS then

return EOF
end if

end if
n← 1 . assume n (data points) is 1
if c == '\f' then . clear display, backlight on

S[0]← 17 . S is uint8_t array
S[1]← 12

n← 2 . n actually 2 in this case
else if c == '\b' then . cursor backspace

S[0]← 8

else if c == '\v' then . cursor line-0
S[0]← 128

else if c == '\1' then . cursor line-1
S[0]← 148

else if c == '\2' then . cursor line-2
S[0]← 168

else if c == '\3' then . cursor line-3
S[0]← 188

else if c == '\n' then . cursor to next line
S[0]← 13

else if c > 255 then . outside range
return EOF

else . send ascii code
S[0]← c cast as uint8_t . cast syntax (uint8_t) c

end if
write S to UART (Listing 03.2) . status← Uart_Write(...)
if status < VI_SUCCESS then

return EOF
else

return c
end if

end function

122 24 April 2020, 13:48:08 Lab 033 4

REVIE
W

DRAFT

Chapter 03 Digital com. and io Lab Exercise 03: Low-level character io

DIO-4

DIO-5

DIO-6

DIO-7

D
IO
-2

D
IO
-3

D
IO
-1

D
IO
-0

1 2 3 UP

4 5 6 DWN

7 8 9 ENTR

0 . –

Figure 03.4: keypad circuit.

The prototype of the getkey function is

char getkey(void);

Your version of getkey will replace that in the C library. A call to getkey
might be:

key = getkey();

The keypad is a matrix of switches. When pressed, each switch uniquely
connects a row conductor to a column conductor. The row and column
conductors are connected to eight digital I/O channels of connector-B
(DIO-0–DIO-7) of the myRio as shown in Figure 03.4.

Each channel may be programmed to operate as either a digital input or
an output. As an output, the channel operates with low output impedance
as it asserts either a high or a low voltage at its terminal. Programmed as
an input, the channel has high input impedance (“Hi-Zmode”) as it detects
either a high or a low voltage.

How will we detect if a key is depressed? Briefly, this is accomplished
by driving (as output) one column to low voltage (digital false), with the
other columns channels in Hi-Z mode. Then, all of the rows are scanned
(detected). If a row is found to be low, the key connecting that row to

123 24 April 2020, 13:48:08 Lab 033 5

REVIE
W

DRAFT

Chapter 03 Digital com. and io Lab Exercise 03: Low-level character io

the driven column must be depressed. This procedure is repeated for each
column. The entire process is repeated until a key is found.

Essential to this scheme is that a pull-up resistor is connected betweenpull-up resistor

each channel and the high voltage.3 So, unless a row is connected (through
a key) to a low-impedance, low-voltage column, it will always read high.

Strategy A strategy for getkey is shown in the pseudocode Algorithm 6.

Algorithm 6 getkey pseudocode
function GETKEY

initialize the 8 digital channels
while a low bit not detected do

for each column do
for each column do

set column to Hi-Z
end for
set one column low
for each row do

read bit
if bit is low then

break row loop
end if

end for
if bit is low then

break out of column loop
end if

end for
wait for some msec

end while
while row is still down do

wait for some msec
end while
identify key from row, column in table
return key

end function

3The NI myRIO-1900 User Guide and Specifications describes the DIO as having built-in
40 KΩ pull-up resistors to 3.3 V (Instruments, 2013, p. 11).

124 24 April 2020, 13:48:08 Lab 033 6

REVIE
W

DRAFT

Chapter 03 Digital com. and io Lab Exercise 03: Low-level character io

Channel initialization The MyRio_Dio structure, defined in DIO.h,
identifies the control registers and the bit to read or write for a channel.

typedef struct { uint32_t dir; // direction register
uint32_t out; // output value register
uint32_t in; // input value register
uint8_t bit; // Bit to modify

} MyRio_Dio;

Declare an array of MyRio_Dio structures, one element for each of the
8 necessary channels. In a loop initialize the channels as follows.

MyRio_Dio Ch[8];
for (i=0; i<8; i++) {

Ch[i].dir = DIOB_70DIR;
Ch[i].out = DIOB_70OUT;
Ch[i].in = DIOB_70IN;
Ch[i].bit = i;

}

Again, the symbols shown are defined in DIO.h.

Channel I/O
Input—Digital channel read function prototype:

NiFpga_Bool Dio_ReadBit(MyRio_Dio* channel);

For example, a typical call might be:

bit = Dio_ReadBit(&Ch[row+4]);

Note: In addition to reading the bit, Dio_ReadBit sets the channel to Hi-Z
mode.
Output—Digital channel write function prototype:

void Dio_WriteBit(MyRio_Dio* channel, NiFpga_Bool value);

For example, a typical call might be:

Dio_WriteBit(&Ch[col], NiFpga_False);

The data type NiFpga_Bool may take values of either NiFpga_True
(high), or NiFpga_False (low).

125 24 April 2020, 13:48:08 Lab 033 7

REVIE
W

DRAFT

Chapter 03 Digital com. and io Lab Exercise 03: Low-level character io

Key code The key code returned by getkey is determined by the indices
of a key code table. The key code table can be stored in a statically declared
4× 4 array of characters.

char table[4][4] = { {'1','2','3', UP},
{'4','5','6', DN},
{'7','8','9',ENT},
{'0','.','-',DEL} };

For example, if the detected row was 1, and the column was 2, then the
value of table[1][2] is the character '6'.

The symbols UP, DN, ENT, DEL are defined in me477.h.

Wait The x ms time delay will be determined by executing a delay-
interval routine. The “wait” function below is suggested. It executes in a
small fraction of a second. In next week’s lab we will calculate and measure
its precise duration.

/*--
Function wait

Purpose: waits for x ms.
Parameters: none
Returns: none

---/
void wait(void) {
uint32_t i;

i = 417000;
while(i>0){
i--;

}
return;

}

Lab 03.3.3 Writing the main function

Write a main function that tests your versions of putchar_lcd and
getkey. It should:

1. Make at least one individual call to each of putchar_lcd and
getkey. Be sure to test the value-out-of-range error returned by
putchar_lcd.

126 24 April 2020, 13:48:08 Lab 033 8

REVIE
W

DRAFT

Chapter 03 Digital com. and io Lab Exercise 03: Low-level character io

2. Collect an entire string using fgets_keypad (which automatically
calls getkey).

3. Write an entire string using printf_lcd (which automatically calls
putchar_lcd). Be sure to test all four escape sequences.

Lab 03.4 Laboratory Procedure

Test and debug your program.

127 24 April 2020, 13:48:08 03.05 3 9

REVIE
W

DRAFT

