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Chapter 06 Discrete dynamic systems Lecture 06.03 Discrete transfer functions

Lecture 06.03 Discrete transfer functions

We begin with a review of Laplace transforms and continuous transfer
functions.

06.03.1 Laplace transforms

In the analysis of this continuous systems, we use the Laplace transform,Laplace transform

defined by

L (f(t)) =

ˆ ∞
0

f(t)e−stdt (06.5)

which leads directly to the familiar Laplace transform properties (1) of
linearity and (2) of differentiation: the Laplace transform of the derivative
of a function f(t) (with zero initial conditions) is s times the transform of
the function F(s) ≡ L(f(t)):

L

(
df(t)

dt

)
= sF(s). (06.6)

06.03.2 Continuous transfer functions

These properties allow us to find the transfer function of a linear continuous
system, given its differential equation. We define the continuous transfercontinuous transfer

function function T(s) to be the Laplace transform of the output Y(s) divided by the
Laplace transform of the input X(s); i.e.

T(s) =
Y(s)

X(s)
. (06.7)

Reconsider the continuous differential equation for a dynamic system
Equation 06.1. The equivalent transfer function, using the linearity and
differentiation properties of the Laplace transform, is

T(s) =
βms

m + βm−1s
m−1 + · · ·+ β1s1 + β0

αnsn + αn−1sn−1 + · · ·+ α1s1+α0
(06.8)

where αk and βk are the same constants that appeared in Equation 06.1.
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06.03.3 z-Transforms

For discrete systems and their difference equations, a very similar procedure
is available. The z-transform F(z) ≡ Z (f(n)) of a sequence f(n), with complex z-transform

variable z (analogous to s), is defined by3

Z (f(n)) =

∞∑
n=0

f(n)z−n. (06.9)

This leads directly to the z-transform properties (1) of linearity and (2) of
delay, analogous to (06.6) for discrete systems: the z-transform of a function
delayed by one sample period is z−1 times the transform of the function
F(z):

Z (f(n− 1)) = z−1F(z), (06.10)

06.03.4 Discrete transfer functions

We define the discrete transfer function T(z) to be the z-transform of the discrete transfer
functionoutput Y(z) divided by the z-transform of the input X(z); i.e.

T(z) =
Y(z)

X(z)
. (06.11)

Given the z-transform properties, we can easily find the transfer func-
tion of a discrete system given its difference equation.

Example 06.03-1 discrete transfer function

What is the discrete tranfer function corresponding to the second-
order difference equation

a0y(n) + a1y(n− 1) + a2y(n− 2) =

= b0x(n) + b1x(n− 1) + b2x(n− 2) (06.12)

with constants an and bn?

The z-transform of the difference equation is determined by linearity
and successively applying (06.10) to arrive at(

1+ a1z
−1 + a2z

−2
)
Y(z) =

(
b0 + b1z

−1 + b2z
−2
)
X(z). (06.13)

3There are many more uses for z-transforms. For more details, see Franklin et al. (1998).
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Rearranging, the discrete transfer function is

Y(z)

X(z)
=
b0 + b1z

−1 + b2z
−2

1+ a1z−1 + a2z−2
(06.14)

Notice that the transfer function (06.14) and the difference equation
(06.12), can be derived from each other by inspection. Notice also
that the transfer function of a discrete system is the ratio of two
polynomials in z, just as the transfer function of a continuous system
is the ratio of two polynomials in s.

06.03.5 Discrete approximations of continuous transfer functions

There are several ways to derive an approximate discrete transfer function
from a corresponding continuous transfer function. We will use a popular
technique called Tustin’s method that approximates a continuous functionTustin’s method

of time by straight lines connecting the sampled points (i.e. trapezoidal
integration).

The discrete transfer function is found using Tustin’s method by making
the following substitution:

s 7→ 2

T

(
1− z−1

1+ z−1

)
(06.15)

and rewriting the transfer function in the form of equation (06.14). Here, T
is the sample period.

Example 06.03-2 Tustin’s method

Consider a continuous first order system described by the transfer
function:

Y(s)

X(s)
=

1

τs+ 1
, where τ is the time constant. (06.16)

Using Tustin’s method, derive a discrete transfer function and the
corresponding difference equation.

Substituting Equation 06.15 into the transfer function, we have:

Y(z)

X(z)
=

α+ αz−1

1− (1− 2α)z−1
,
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where α is a constant:
α =

T

2τ+ T

from which the difference equation can be inferred (see Equa-
tions 06.12 to 06.14 above):

y(n) = (1− 2α)y(n− 1) + αx(n) + αx(n− 1)

Notice again that the current value of the output y(n) depends on
the previous output, y(n−1), and on the current and previous inputs,
x(n) and x(n− 1).
Notice also that the coefficients depend on the time constant τ in the
original continuous system and on the sample period T .
During each sample period, the value of the current value of the
input x(n) is measured and the current value of the output y(n) is
computed. Suppose that the time constant τ = 2, the sample period T
= 1, and that the input is a unit step (x(n) = 1 for all n), and the initial
condition y(0) = 0.
Then, from our solution for y(n),

y(n) = 0.6y(n− 1) + 0.4 (06.17)

and we can compute the output sequence:

Figure 06.3 shows plots of the input and output sequences.
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Figure 06.3: input and output sequences.

The dotted line is the exact solution y(t/T) of the original continuous
differential equation. As you can see, in this example, Tustin’s method
is very close to the exact solution at the sample points.

See Resource 13 for a table of common controller transfer functions
converted to discrete transfer functions via Tustin’s method.

06.03.6 Matlab’s c2d

The Matlab Control Systems Toolbox includes a function c2d that com-
putes the Tustin equivalent discrete system sysd from the continuous sys-
tem sys, as follows.

sysd = c2d(sys, T, 'tustin')

This function can also use other common techniques to yield a discrete
approximation of a continuous transfer function.
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