
REVIE
W

DRAFT

Chapter 06 Discrete dynamic systems Lab Exercise 06: Transfer function generator

Lab Exercise 06 Transfer function generator

Lab 06.1 Objectives

The objectives of this exercise are to:

1. Use real-time clock interrupts to provide timing.
2. Implement an arbitrary transfer function generator.
3. Introduce A/D and D/A conversion.

Lab 06.2 Introduction

In this lab exercise, you will write a general purpose program capable
of approximating the performance of any SISO, LTI system! The system
input and output will both be analog electrical signals. Your program will
implement this with a difference equation.

At the beginning of each BTI, your ISR will read an analog input to
obtain the current input value, compute the current value of the output
y(n), and apply the current output value to an analog output.

This process continues until is entered on the keypad. The input
voltage will be provided by a function generator. Both the input and output
voltages will be displayed on the oscilloscope.

You will use three new myRIO features in this experiment: an interrupt
timer, the ADC, and the DAC. The first is described in detail in Resource 12
and the others in Resource 14.

Although we could implement the difference equation Equation 06.4 as
shown, the sensitivity of the output to the coefficients leads to numerical
inaccuracies as the order of the system N becomes large, so we use the
biquad cascade representation of Lecture 06.04.

Lab 06.3 Pre-laboratory preparation

The program consists of a main function and an interrupt service routine
(ISR) running in a separate thread. The ISR is set to execute with a period
of 0.5 ms (determined by the Timer IRQ), and computes the DAC output
from the ADC input by means of a difference equation.

Lab 06.3.1 Main program

The only tasks of main will be the following.

1. Set up and enable the Timer IRQ interrupt,

201 24 April 2020, 13:48:08 Lab 063 1



REVIE
W

DRAFT

Chapter 06 Discrete dynamic systems Lab Exercise 06: Transfer function generator

2. Enter a loop, ending only when a is received from the keypad.
Use getkey.

3. Signal the timer thread to terminate using the irqThreadRdy flag,
and wait for it to terminate.

Lab 06.3.2 Interrupt service routine

The interrupt service routine thread implements a dynamic system. The
heart of the ISR is a while loop that checks the irqThreadRdy flag (set in
main) to see if the thread should continue.

Before the loop begins, initialize the analog input/output, and set the
analog output to 0 V.

Each time through the loop:

1. Get ready for the next interrupt by waiting for the IRQ to assert.
Then write the time interval to wait between interrupts (BTI) to the
IRQTIMERWRITE register and write TRUE to the IRQTIMERSETTIME
register.

2. Read the analog input to obtain the current input value x(n).
3. Call a function cascade (see below) to calculate the current value of

the output y(n) by computing all of the sections in the biquad cascade.
Each biquad section is computed according to Equation 06.18.

4. Send the output value to the analog output.
5. Acknowledge the interrupt.

After the loop terminates, save the response to Lab6.mat.
The ISR must allocate storage for variables and arrays associated with

the discrete dynamic system, including:

1. the length of the BTI in microseconds,
2. the number of biquad sections ns, and
3. the system constants (ai and bi) for the biquad sections.

The dynamic system corresponding to the collection of biquad sections
can be conveniently referred to and manipulated by first defining a struc-
ture to contain the coefficients and previous values of input and output for
a single biquad section. We might define a “biquad” structure as follows.

struct biquad {
double b0; double b1; double b2; // numerator
double a0; double a1; double a2; // denominator
double x0; double x1; double x2; // input

202 24 April 2020, 13:48:08 Lab 063 2



REVIE
W

DRAFT

Chapter 06 Discrete dynamic systems Lab Exercise 06: Transfer function generator

double y1; double y2; // output
};

This definition should be placed just before the prototypes section of your
program.

Then, a specific dynamic system can be defined as an array of these
biquad structures, each array element corresponds to an individual biquad
section:

int myFilter_ns = 2; // No. of sections
uint32_t timeoutValue = 500; // T - us; f_s = 2000 Hz
static struct biquad myFilter[] = {
{1.0000e+00, 9.9999e-01, 0.0000e+00,
1.0000e+00, -8.8177e-01, 0.0000e+00, 0, 0, 0, 0, 0},

{2.1878e-04, 4.3755e-04, 2.1878e-04,
1.0000e+00, -1.8674e+00, 8.8220e-01, 0, 0, 0, 0, 0}

};

This system description can be placed within the ISR, near its beginning.
The first two lines establish the number of biquad sections, and the length
of the BTI in microseconds. Finally, myFilter is the name of an array of
biquad structures being initialized.

For testing purposes, the initialized constants in the example above
correspond to a system of two biquad sections (ns = 2), encoding a
unity-gain low-pass filter, with sampling frequency of 2000 Hz. Derived
using Tustin’s method, they correspond to a third-order continuous system
having a pair of complex poles with natural frequency of 40 Hz, and with
damping ratio 0.5. The remaining real pole is at 40 Hz.

Lab 06.3.3 Crazy about pointers!

The most challenging part of this task is the calculation of the current out-
put value y(n). The use of pointers makes the calculation both straightfor-
ward and efficient.

Box 06.1 hint

Don’t be tempted to code this algorithm using array indices (instead
of pointers); that would be much too slow for our purposes.

203 24 April 2020, 13:48:08 Lab 063 3



REVIE
W

DRAFT

Chapter 06 Discrete dynamic systems Lab Exercise 06: Transfer function generator

Lab 06.3.4 The cascade function

The cascade function implements the complete dynamic system by pass-
ing the measured input through the string of biquad sections. The ISR must
pass to cascade the value of the current input x(n) measured by the ADC,
the number of biquad sections ns, the array of biquad structures contain-
ing the coefficients and history variables (xi and yi) for all sections. It might
have a prototype that looks like:

double cascade(
double xin, // input
struct biquad *fa, // biquad array
int ns, // no. segments
double ymin, // min output
double ymax // max output

);

Here, xin is the current system input, fa is the name of an array of biquad
structures, ns is the corresponding number of biquad sections, and ymin
and ymax are the saturation limits.

In the above example, myFilter would be passed through fa. The
value returned by cascade is the current value of the system output y(n).

Lab 06.3.5 Coding cacade

An efficient way to code cascade is to allocate a pointer f in cascade that
will be used to point to elements of the array of biquad structures. Begin
the function by equating the pointer to the first element in the array (i.e. the
first biquad): f = fa;. Variables inside the biquad structure are accessed
by using the pointer name, e. g. f->a0, f->b0, f->x0, f->y1, etc. (The ->
operator is equivalent to dereferencing and then accessing a member (say,
(*f).a0) and is typed as a minus sign immediately followed by >.)

Then, loop ns times, to cycle through each of the biquad sections in
the array. At the beginning of each loop, the output value y0 of previous
biquad must be passed to the input value f->x0 of the current biquad.

Within the loop, coding the output value y0 might look like:

y0 = (
f->b0*f->x0 + f->b1*f->x1 + // ... etc.

)/f->a0;

204 24 April 2020, 13:48:08 Lab 063 4



REVIE
W

DRAFT

Chapter 06 Discrete dynamic systems Lab Exercise 06: Transfer function generator

See Equation 06.18.
Each time through the loop, after the output value has been computed,

the previous values x and ymust be updated, so that they will be correct at
the next time step. For example,

f->x2 = f->x1; f->x1 = f->x0; // ... etc.

At the end of the loop, the pointer f is incremented to advance to the
next biquad in the array.

One more point: if the DAC is given a value beyond its range [−10,+10]

V, it will saturate its output value appropriately. However, our difference
equation Equation 06.18 depends on previous values of the output, but
doesn’t saturate. To correct this disparity, cascade should saturate the
output y0 of the final biquad before it is saved for the next iteration.

For example, define the macro

#define SATURATE(x,lo,hi) { \
((x) < (lo) ? (lo) : (x) > (hi) ? (hi) : (x)) \

}

Pass appropriate values of the xmin and xmax parameters to cascade.
Then, for the last biquad, immediately after y0 is computed, saturate its
value: y0 = SATURATE(y0, ymin, ymax);

Lab 06.4 Laboratory Procedure

A good strategy to follow in writing this program is to first implement and
debug everything except the calculation of the biquad cascade. That is, set
up the main program and the ISR, including all arrays and timing. In the
ISR, simply pass the input value from the ADC directly to the DAC. For
example,

VADin = Aio_Read(&CI0);
Aio_Write(&CO0, VADin);

This will allow you to observe the input and output on the oscilloscope,
and determine if the interrupt timing is functioning properly.

When you have debugged those portions of the program augment the
code above with the call to cascade.

205 24 April 2020, 13:48:08 Lab 063 5



REVIE
W

DRAFT

Chapter 06 Discrete dynamic systems Lab Exercise 06: Transfer function generator

Lab 06.5 Does it work?

The low-pass digital filter described above was derived using Tustin’s
method from the transfer function of the three-pole continuous system:

Vout(s)

Vin(s)
=

ω3n
(s+ωn)(s2 + 2ζωns+ω2n)

(06.19)

where ωn = 2π × 40 rad/s, and ζ = 0.5. This system belongs to a class of
filters called Butterworth filters. They are signal processing filters designedButterworth filters

to have the flattest possible frequency response in the passband.

Lab 06.5.1 Step response

Using the oscilloscope (DC coupled), observe the step response of the
system by applying a low frequency square wave (e.g. at 8 Hz) with an
amplitude of 5 V as the input with the function generator.

Save the input and output of cascade in 500-point buffers. After the
timer loop ends, save the buffers to Lab6.mat, and transfer the data to
Matlab. Plot and compare the measured step response to the theoretical
response of the corresponding continuous system.6. Explain.

Lab 06.5.2 Frequency response

Again, using the oscilloscope (AC coupled), observe the frequency re-
sponse by altering the frequency of a 5 V input sine wave.

Record (write down) the amplitude and phase of the out-
put relative to the input sine wave at the following frequencies:
[5, 10, 20, 40, 60, 100, 140, 200] Hz. Given the input amplitude, compute the
transfer function magnitude (dB) at each frequency.

In Matlab, plot the theoretical magnitude (dB) and phase (deg) versus
the frequency (Hz on a logarithmic scale) for the continuous system transfer
function.7 Plot the corresponding measured data as discrete symbols on top
of the theoretical frequency response. Explain.

6To simulate the theoretical response, Matlab’s lsim is a good choice.
7To generate the data for this plot, Matlab’s bode is a good choice. Note that the

specifications for the plot format require you to generate the plot separately from your call
to bode.

206 24 April 2020, 13:48:08 06.05 3 6


