Lecture 02.02 Fourier series

Fourier series are mathematical series that can represent a periodic signal as a sum of sinusoids at different amplitudes and frequencies. They are useful for solving for the response of a system to periodic inputs. However, they are probably most important *conceptually*: they are our gateway to thinking of signals in the *frequency domain*—that is, as functions of *frequency* (not time). To represent a function as a Fourier series is to *analyze* it as a sum of sinusoids at different frequencies ω_n and amplitudes and a_n . It's *frequency spectrum* is the functional representation of amplitudes a_n versus frequency ω_n .

frequency domain Fourier analysis

> frequency spectrum

> > Let's begin with the definition.

Definition 02.02.1: Fourier series: trigonometric form

The *Fourier analysis* of a periodic function y(t) is, for $n \in \mathbb{N}_0$ and period T,

$$a_{n} = \frac{2}{T} \int_{-T/2}^{T/2} y(t) \cos(2\pi n t/T) dt$$
 (02.9)

$$b_n = \frac{2}{T} \int_{-T/2}^{T/2} y(t) \sin(2\pi n t/T) dt. \qquad (02.10)$$

The *Fourier synthesis* of a periodic function y(t) with analysis components a_i and b_j corresponding to ω_j is

$$y(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(2\pi n t/T) + b_n \sin(2\pi n t/T).$$
 (02.11)

Let's consider the complex form of the Fourier series, which is analogous to Definition 02.02.

Definition 02.02.2: Fourier series: complex form

The *Fourier analysis* of a periodic function y(t) is, for $n \in \mathbb{N}_0$ and period T,

$$c_{\pm n} = \frac{1}{T} \int_{-T/2}^{T/2} y(t) e^{-j2\pi n t/T} dt.$$
 (02.12)

The *Fourier synthesis* of a periodic function y(t) with analysis components c_n corresponding to ω_n is

$$y(t) = \sum_{n=-\infty}^{\infty} c_n e^{j2\pi n t/T}.$$
 (02.13)

We call the integer n a *harmonic* and the frequency associated with it

$$\omega_n = 2\pi n/T \tag{02.14}$$

the *harmonic frequency*. There is a special name for the first harmonic (n = 1): the *fundamental frequency*. It is called this because all other frequency components are integer multiples of it.

harmonic frequency fundamental frequency

harmonic amplitude

harmonic

It is also possible to convert between the two representations above.

Definition 02.02.3: Fourier series: converting between forms

The complex Fourier analysis of a periodic function y(t) is, for $n \in \mathbb{N}_0$ and a_n and b_n as defined above,

$$c_{\pm n} = \frac{1}{2} \left(a_{|n|} \mp j b_{|n|} \right)$$
(02.15)

The sinusoidal Fourier analysis of a periodic function y(t) is, for $n\in\mathbb{N}_0$ and c_n as defined above,

$$a_n = c_n + c_{-n} \text{ and } (02.16)$$

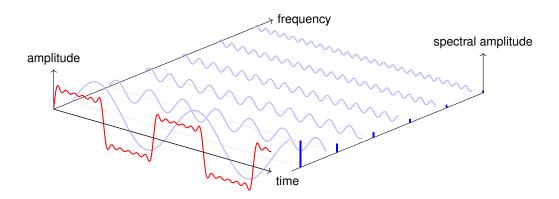
$$b_n = j (c_n - c_{-n}).$$
 (02.17)

The *harmonic amplitude* is

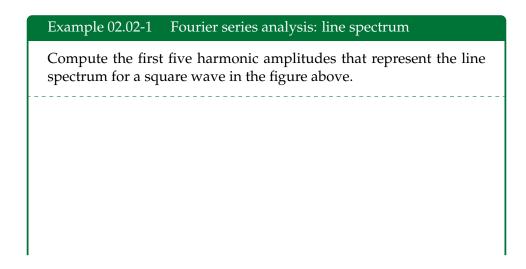
$$C_{n} = \sqrt{a_{n}^{2} + b_{n}^{2}}$$
(02.18)
= $2\sqrt{c_{n}c_{-n}}$. (02.19)

line spectrum A *line spectrum* is a graph of the harmonic amplitudes as a function of the harmonic frequencies.

The following illustration demonstrates how sinusoidal components sum to represent a square wave. A line spectrum is also shown.



Let us compute the associated spectral components in the following example.



Chapter 02 Signals

Lecture 02.02 Fourier series

3 September 2018, 17:29:26