
Chapter 02 Signals Lecture 02.03 Fourier transforms

Lecture 02.03 Fourier transforms

The source for this lecture is in SageMath kernel Jupyter notebook. For more
information, see jupyter.org and sagemath.org.

See ricopic.one/measurement/notebooks for the source code notebook.
First, we import packages and all that. We use matplotlib for plotting
and numpy for numerics.

Let’s consider a periodic function f with period T (T). Each period, the
function has a triangular pulse of width δ (pulse_width) and height δ/2.

save_figures = False # true to save LaTeX figures
T = 35 # period
pulse_width = 2 # pulse width
f1(x) = pulse_width/2-abs(x) # first pulse
f2(x) = pulse_width/2-abs(x-T) # second pulse
omega_max = 12 # rad/s max frequency in line spectrum
n_max = round(omega_max*T/(2*pi)) # corresponding max harmonic

First, we plot the function f in the time domain. Using the SageMath
piecewise function due to its Fourier Series methods (used momentarily),
we define it and use matplotlib to plot it.

f = piecewise([[(-pulse_width/2,pulse_width/2),f1]]) # for FS series
fp = piecewise(# for plotting

[
[[-T/2,-pulse_width/2],0],
[(-pulse_width/2,pulse_width/2),f1],
[[pulse_width/2,T/2],0],
[(T/2,T-pulse_width/2),0],
[[T-pulse_width/2,T+pulse_width/2],f2],
[(T+pulse_width/2,T+T/2),0],
[[T+T/2,T+T/2],0]

]
)
N = 201 # number of points to plot
tpp = np.linspace(-T/2,3*T/2,N) # numeric array of time values
fpp = []
for i in range(0,N):

fpp.append(fp(tpp[i])) # build array of function values
axes = plt.figure(1)
plt.plot(tpp,fpp,'b-',linewidth=2) # plot
plt.xlabel('time (s)')

30 3 September 2018, 17:29:26 02.03 3 1

http://jupyter.org/
http://www.sagemath.org/
http://ricopic.one/measurement/notebooks

Chapter 02 Signals Lecture 02.03 Fourier transforms

plt.xlim([-T/2,3*T/2])
plt.xticks([pulse_width/2,T],['$\\frac{\delta}{2}$','$T='+str(T)+'$ s'])
plt.yticks([0,pulse_width/2],['0','$\delta/2$'])
if save_figures:

tikz_save(# save for LaTeX's pgfplots
'figures/fourier_series_to_transform_pulse'+
str(T)+'.tex',
figureheight='.5\linewidth',
figurewidth='1\linewidth'

)
plt.show() # display here

For δ = 2 and T ∈ [5, 15, 25], the left-hand column of Figure 02.1 shows
two triangle pulses for each period T .

Consider the following argument. Just as a Fourier series is a frequency
domain representation of a periodic signal, a Fourier transform is a fre-
quency domain representation of an aperiodic signal (we will rigorously de-
fine it in a moment). The Fourier series components will have an analog,
then, in the Fourier transform. Recall that they can be computed by inte-
grating over a period of the signal. If we increase that period infinitely, the
function is effectively aperiodic. The result (within a scaling factor) will be
the Fourier transform analog of the Fourier series components.

Let us approach this understanding by actually com-
puting the Fourier series components for increasing period
T . SageMath has nice methods for its piecewise class,
fourier_series_cosine_coefficient(n,T/2) and
fourier_series_sine_coefficient(n,T/2), that can compute the
Fourier series cosine and sine components an and bn for component n (n)
and period T (T).

f_cos = [];
f_sin = [];
f_harmonic_amplitude = [];
omega = [];
for i in range(0,n_max):

f_cos.append(f.fourier_series_cosine_coefficient(i,T/2))
f_sin.append(f.fourier_series_sine_coefficient(i,T/2))
f_harmonic_amplitude.append(

T/pulse_width*sqrt(f_cos[i]**2+f_sin[i]**2)
)
omega.append(2*pi*i/T)

31 3 September 2018, 17:29:26 02.03 3 2

Chapter 02 Signals Lecture 02.03 Fourier transforms

Furthermore, we have computed the harmonic amplitude
(f_harmonic_amplitude):

Cn =
√
a2n + b2n (02.20)

which we have also scaled by a factor T/δ in order to plot it with a
convenient scale.

axes = plt.figure(2)
markerline, stemlines, baseline = plt.stem(

omega, f_harmonic_amplitude,
linefmt='b-', markerfmt='bo', basefmt='r-'

)
plt.xlabel('frequency ω (rad/s)')
plt.xlim([0,omega_max])
plt.yticks([0,pulse_width/2],['0','$\delta/2$'])
if save_figures:

tikz_save(# save for LaTeX
'figures/fourier_series_to_transform_spectrum'+
str(T)+'.tex',
figureheight='.5\linewidth',
figurewidth='1\linewidth'

)
plt.show() # show here

{
} The line spectra are shown in the right-hand column of Figure 02.1.

Note that with our chosen scaling, as T increases, the line spectra reveal a
distinct waveform.

Let F be the continuous function of angular frequency ω

F(ω) =
δ

2
· sin2(ωδ/4)

(ωδ/4)2
. (02.21)

First, we plot it.

F(w) = pulse_width/2* \
sin(w*pulse_width/(2*2))**2/ \
(w*pulse_width/(2*2))**2

N = 201 # number of points to plot
wpp = np.linspace(0.0001,omega_max,N) # numeric array of time values

32 3 September 2018, 17:29:26 02.03 3 3

Chapter 02 Signals Lecture 02.03 Fourier transforms

amplitude CnT/δ

δ
2

T = 5 s

δ/2

5 10

δ/2

δ
2

T = 15 s

δ/2

5 10

δ/2

δ
2

T = 25 s

δ/2

time (s)

5 10

δ/2

frequency ω (rad/s)

Figure 02.1: triangle pulse trains (left column) with longer periods, descending, and their
corresponding line spectra (right column), scaled for convenient comparison.

Fpp = []
for i in range(0,N):

Fpp.append(F(wpp[i])) # build array of function values
axes = plt.figure(3)
plt.plot(wpp,Fpp,'b-',linewidth=2) # plot
plt.xlim([0,omega_max])
plt.yticks([0,pulse_width/2],['0','$\delta/2$'])
plt.xlabel('frequency ω (rad/s)')
plt.ylabel('$F(\omega)$')
if save_figures:

tikz_save(# save for LaTeX
'figures/fourier_series_to_transform_transform.tex',
figureheight='.5\linewidth',
figurewidth='1\linewidth'

)
plt.show()

Let’s consider the plot in Figure 02.2 of F. It’s obviously the function
emerging in Figure 02.1 from increasing the period of our pulse train.

Now we are ready to define the Fourier transform and its inverse.

33 3 September 2018, 17:29:26 02.03 3 4

Chapter 02 Signals Lecture 02.03 Fourier transforms

1 2 3 4 5 6 7 8 9 10 11 12

δ/2

frequency ω (rad/s)

F
(ω

)

Figure 02.2: F(ω), our mysterious Fourier series amplitude analog.

Definition 02.03.1: Fourier transforms: trigonometric form

Fourier transform (analysis):

A(ω) =

∫∞
−∞ y(t) cos(ωt)dt (02.22)

B(ω) =

∫∞
−∞ y(t) sin(ωt)dt. (02.23)

Inverse Fourier transform (synthesis):

y(t) =
1

2π

∫∞
−∞A(ω) cos(ωt)dω+

1

2π

∫∞
−∞ B(ω) sin(ωt)dω. (02.24)

34 3 September 2018, 17:29:26 02.03 3 5

Chapter 02 Signals Lecture 02.03 Fourier transforms

Definition 02.03.2: Fourier transforms: complex form

Fourier transform F (analysis):

F(y(t)) = Y(ω) =

∫∞
−∞ y(t)ejωtdt. (02.25)

Inverse Fourier transform F−1 (synthesis):

F−1(Y(ω)) = y(t) =
1

2π

∫∞
−∞ Y(ω)e−jωtdω. (02.26)

So now we have defined the Fourier transform. There are many
applications, including solving differential equations and frequency domain
representations—called spectra—of time domain functions.

There is a striking similarity between the Fourier transform and the
Laplace transform, with which you are already acquainted. In fact, the
Fourier transform is a special case of a Laplace transform with Laplace
transform variable s = jω instead of having some real component. Both
transforms convert differential equations to algebraic equations, which can
be solved and inversely transformed to find time-domain solutions. The
Laplace transform is especially important to use when an input function
to a differential equation is not absolutely integrable and the Fourier
transform is undefined (for example a step or ramp function). However,
the Laplace transform is also preferred for initial value problems due to its
convenient way of handling them. The two transforms are equally useful
for solving steady state problems. Although the Laplace transform has
many advantages, for spectral considerations, the Fourier transform is the
only game in town.

A table of Fourier transforms and their properties can be found on the
course website in the “Resources” section.

35 3 September 2018, 17:29:26 02.03 3 6

