
Chapter 02 Signals Lecture 02.06 Discrete Fourier transforms

Lecture 02.06 Discrete Fourier transforms

The source for this lecture is in SageMath kernel Jupyter notebook. For more
information, see jupyter.org and sagemath.org.

See ricopic.one/measurement/notebooks for the source code notebook.
First, we import packages and all that. We use matplotlib for plotting,
numpy for numerics, and scipy for discrete (fast) Fourier transforms.

Modern measurement systems primarily construct spectra by sampling
an analog electronic signal y(t) to yield the sample sequence (yn) and
perform a discrete Fourier transform.

Definition 02.06.1: discrete Fourier transform

The discrete Fourier transform (DFT) of a sample sequence (yn) of
length N is (Ym), where m ∈ [0, 1, · · · , N− 1] and

Ym =

N−1∑
n=0

yne
−j2πmn/N.

The inverse discrete Fourier transform (IDFT) reconstructs the original
sequence for n ∈ [0, 1, · · · , N− 1] and

yn =
1

N

N−1∑
n=0

Yme
j2πmn/N.

The DFT (Ym) has a frequency interval equal to the sampling frequency
ωs/N and the IDFT (yn) has time interval equal to the sampling time T .
The first N/2+ 1 DFT (Ym) values correspond to frequencies

and the remaining N/2− 1 correspond to frequencies

In practice, the definitions of the DFT and IDFT are not the most efficent
methods of computation. A clever algorithm called the fast Fourier transform
(FFT) computes the DFT much more efficiently. Although it is a good
exercise to roll our own FFT, in this lecture we will use scipy’s built-in
FFT algorithm, loaded with the following command.
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from scipy import fft

Now, given a time series array y representing (yi), the DFT (using the
FFT algorithm) can be computed with the following command.

fft(y)

In the following example, we will apply this method of computing the
DFT.

02.06.0.1 A DFT/FFT example

We would like to compute the DFT of a sample sequence (yn) generated by
sampling a spaced-out sawtooth. Let’s first generate the sample sequence
and plot it.

We define the sampling rate fs, which defines the sampling interval
Ts. Furthermore, we define the frequency of the spaced sawtooth signal
f_signal.

fs = 200 # sampling rate
Ts = 1.0/fs # sampling interval
f_signal = 10 # frequency of the signal

We want an interval of ramp followed by an interval of “space” (zeros).
The following method of generating the sampled signal y helps us avoid
leakage, which we’ll describe after the example.

arr_zeros = np.zeros(fs/f_signal/2) # half signal period worth of zeros
arr_ramp = np.arange(fs/f_signal/2) # half signal period worth of ramp
y = [] # initialize time sequence
j = 0
for i in range(fs):

if i % (fs/f_signal/2) == 0:
# if we are at the start of a signal period
if j % 2 == 0:

# every other signal period
y = np.append(y,arr_zeros)

else:
y = np.append(y,arr_ramp)

j += 1
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Figure 02.6: (top) a sampled sequence (yn) plotted through time and (bottom) its discrete
Fourier transform sequence (Ym) plotted through frequency.

From this sequence, we can compute the following parameters.

N = len(y) # number of samples
t_a = np.arange(0,N*Ts,Ts) # time array
time_total = N*Ts # total time in series

Plotting this with matplotlib is fairly straightforward. The result is
shown in the top plot of Figure 02.6.

plt.figure()
plt.plot(t_a,y,'b-',linewidth=2)
plt.xlabel('time (s)')
plt.ylabel('$y_n$');

Display the plot with the following command.

plt.show()

Now we have a nice time sequence on which we can perform our DFT.
It’s easy enough to compute the FFT.

44 3 September 2018, 17:29:26 02.06 3 3



Chapter 02 Signals Lecture 02.06 Discrete Fourier transforms

Y = fft(y)/N # FFT with proper normalization

Recall that the latter values correspond to negative frequencies. In
order to plot it, we want to rearrange our Y array such that the elements
corresponding to negative frequencies are first. It’s a bit annoying, but c’est
la vie.

Y_positive_zero = Y[range(N/2)]
Y_negative = np.flip(

np.delete(
Y_positive_zero,
0

),
0

)
Y_total = np.append(Y_negative,Y_positive_zero)

Now all we need is a corresponding frequency array.

freq_total = np.arange(-N/2+1,N/2)*fs/N

Now, just to plot.

plt.figure()
plt.plot(freq_total, abs(Y_total),'r-',linewidth=2)
plt.xlabel('frequency $f$ (Hz)')
plt.ylabel('$Y_m$');

And now display the plot of the spectrum, shown on the bottom of
Figure 02.6.

plt.show();

02.06.0.2 Leakage

The DFT assumes the sequence (yn) is periodic with period N. An
implication of this is that if any periodic components have period Nshort <

N, unless N is divisible by Nshort, spurious components will appear in (Yn).
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Figure 02.7: three sample window functions.

Avoiding leakage is difficult, in practice. Instead, typically we use a window
function to mitigate its effects. Effectively, windowing functions—such as
the Bartlett, Hanning, and Hamming windows—multiply (yn) by a function
that tapers to zero near the edges of the sample sequence.

Numpy has several window functions such as bartlett(),
hanning(), and hamming(). For usage information on a function, the
following ? idiom is useful.

np.hanning?

Let’s plot the windows to get a feel for them.

bartlett_window = np.bartlett(N)
hanning_window = np.hanning(N)
hamming_window = np.hamming(N)
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plt.figure()
plt.plot(t_a,bartlett_window,'b-',label='Bartlett',linewidth=2)
plt.plot(t_a,hanning_window,'r-',label='Hanning',linewidth=2)
plt.plot(t_a,hamming_window,'g-',label='Hamming',linewidth=2)
plt.xlabel('time (s)')
plt.ylabel('window $w_n$')
plt.legend();

Show the figure Figure 02.7.

plt.show()
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