Chapter 02 Signals Lecture 02.07 Problems for Chapter 02

02.07 Problems for Chapter 02

02.07.1 Encoding and decoding with DFTs

The source for this exercise lecture is in a Python 2 kernel Jupyter notebook.
For more information, see python.org and jupyter.org.

See ricopic.one/measurement/notebooks for the source code notebook.

This exercise encodes a “secret word” into a sampled waveform for
decoding via a discrete Fourier transform (DFT). The nominal goal of the
exercise is to decode the secret word. Along the way, plotting and
interpreting the DFT will be important.

First, load relevant packages.

We define two functions: letter_to_number to convert a letter into
an integer index of the alphabet (a becomes 1, b becomes 2, etc.) and
string_to_number_list to convert a string to a 1list of ints, as
shown in the example at the end.

def letter_to_number (letter):
return ord(letter) - 96

def string_to_number_list (string):
out = [] # list
for i in range (0, len(string)) :
out.append(letter_to_number (stringf[i]))
return out # list

print '""aces" = '+str(string_to_number_ list('aces'))

| "aces" = [1, 3, 5, 19]

Now, we encode a code string code into a signal by beginning with
“white noise,” which is broadband (appears throughout the spectrum) and
adding to it sin functions with amplitudes corresponding to the letter
assignments of the code and harmonic corresponding to the position of the
letter in the string. For instance, the string 'bad' would be represented by
noise plus the signal

2sin 27t + 1 sin47tt + 4 sin 67tt. (02.34)

N = 2000
Tm = 30

48 3 September 2018, 17:29:26 02.07>1


https://www.python.org/
http://jupyter.org/
http://ricopic.one/measurement/notebooks

Chapter 02 Signals Lecture 02.07 Problems for Chapter 02

T = float (Tm)/float (N)

fs = 1/T

x = np.linspace (0, Tm, N)

noise = 4xnp.random.normal (0, 1, N)

code = 'abracadabra'

code_number_array = np.array(string_to_number_list (code)) #
y = np.array (noise)

for i in range (0, len(code)) :

Now, we plot.

plt.figure ()

plt.plot (x,Vv)
plt.x1im ([0, Tm/47)
plt.xlabel ('time (s)'")
plt.ylabel ('Sy_n$")
plt.show ()

Finally, we can save our data to a file secrets to distribute our
message. We save it in two formats: 1. secrets.npy the numpy format
that’s not all that compressed and 2. secrets.mat the MATLAB format
that’s impressively compressed.

np.save ('secrets',y)
scipy.io.savemat ('secrets.mat',mdict={"'y':y.astype('float"')

In order to load the .npy file into Python, we can use the following
command.

secret_array = np.load('secrets.npy')

49 3 September 2018, 17:29:26 02.07>2

list into array

y = y + code_number_array[i]l*np.array(np.sin(2.+np.pix (L+1.)*x))



Chapter 02 Signals Lecture 02.07 Problems for Chapter 02

40 A

S m
(I |

_40 -

Yn
o

time (s)

Figure 02.8: png

50 3 September 2018, 17:29:26 02.07> 3



