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Lecture 03.04 Second-order measurement systems:
free response

Second-order measurement systems have input-output differential equa-
tions of the form

d2y

dt2
+ 2ζωn

dy

dt
+ω2ny = f(t) (03.12)

where ωn is called the natural frequency, ζ is called the (dimensionless) natural frequency
ωndamping ratio, and f is a forcing function that depends the input u as
damping ratio ζ

f(t) = b2
d2u

dt2
+ b1

du

dt
+ b0u. (03.13)

Measurement systems with two energy storage elements—such as those
with an inertial element and a spring-like element—can be modeled with
second-order systems.

For distinct roots (λ1 6= λ2), the homogeneous solution is, for some real
constants κ1 and κ2,

yh(t) = κ1e
λ1t + κ2e

λ2t (03.14)

where
λ1, λ2 = −ζωn ±ωn

√
ζ2 − 1. (03.15)

03.04.1 Free response

The free response yfr of a system is its response to initial conditions and no free response yfr

forcing (f(t) = 0). This is useful for two reasons:

1. perturbations of the measurement system from equilibrium result in
free response, making it critical; and

2. the free response can be added to a forced response.

The free response is found by applying initial conditions to the homo-
geneous solution. With initial conditions y(0) = y0 and ẏ(0) = 0, the free
response is

yfr(t) = y0
1

λ2 − λ1

(
λ2e

λ1t − λ1e
λ2t
)
. (03.16)

There are five possibilities for the location of the roots λ1 and λ2, all
determined by the value of ζ.
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ζ ∈ (−∞, 0): unstable This case is very undesirable because it means our
measurement system is unstable and, given any nonzero input or
output, will explode to infinity. Not a good look.boom

ζ = 0: undamped An undamped system will oscillate forever if perturbed
from zero output. Once again, a bad look for a measurement device.

ζ ∈ (0, 1): underdamped Roughly speaking, underdamped systems oscil-
late, but not forever. Let’s consider the form of the solution for initial
conditions and no forcing. The roots of the characteristic equation are

λ1, λ2 = −ζωn ± jωn
√
1− ζ2 = −ζωn ± jωd (03.17)

where the damped natural frequency ωd is defined asdamped natural
frequency ωd

ωd ≡ ωn
√
1− ζ2. (03.18)

From Equation (03.16) for the free response, using Euler’s formulas
to write in terms of trigonometric functions, and the initial conditions
y(0) = y0 and ẏ(0) = 0, we have

yfr(t) = y0
e−ζωnt√
1− ζ2

cos(ωdt−ψ) (03.19)

where the phase ψ is

ψ = arctan
ζ√
1− ζ2

. (03.20)

This is an oscillation that decays to the value it oscillates about,
y(t)|t→∞ = 0. So any perturbation of a critically damped measure-
ment system will result in a decaying oscillation about equilibrium.

ζ = 1: critically damped In this case, the roots of the characteristic equation
are equal:

λ1 = λ2 = −ωn (03.21)

So we must modify Equation 03.14 with a factor of t for the homoge-
neous solution. The free response for initial conditions y(0) = y0 and
ẏ(0) = 0, we have

yfr(t) = y0 (1+ωnt) e
−ωnt. (03.22)

This decays without oscillation, but just barely.
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Figure 03.7: free response yfr(t) of a second-order system with initial conditions y(0) = y0
and ẏ(0) = 0 for different values of ζ. Underdamped, critically damped, and overdamped
cases are displayed.

ζ ∈ (1,∞): overdamped Here the roots of the characteristic equation are
distinct and real. From Equation (03.16) with free response to initial
conditions y(0) = y0 and ẏ(0) = 0, we have the sum of two decaying
real exponentials. This response will neither overshoot nor oscillate—
like the critically damped case—but with even lesser gusto.

Figure 03.7 displays the free response results. Note that a small
damping ratio results in overshooting and oscillation about the equilibrium
value. In contrast, large damping ratio results in neither overshoot nor
oscillation. However, both small and large damping ratios yield responses
that take longer durations to approach equilibrium than damping ratios
near unity. For this reason, the damping ratio of a measurement system
should be close to one. There are tradeoffs on either side of ζ = 1.
Slightly less than one yields faster responses that overshoot a small amount.
Slightly greater than one yields slower responses less prone to oscillation.

Example 03.04-1 MRFM cantilever beam detector

In magnetic resonance force microscopy (MRFM), the primary detec-
tor is a small cantilever beam with a magnetic tip. Model the beam as
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a spring-mass-damper system with mass m = 6 pg,a spring constant
k = 15 mN/m, and damping coefficient B = 37.7 · 10−15 N·s/m.

1. What is the natural frequency ωn?
2. What is the damping ratio ζ?
3. In free response, how long before the amplitude must be less

than 10% of its initial value? An upper bound is sufficient.

aOne pg = 10−12g = 10−15kg.
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