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Lecture 03.05 Second-order measurement systems:
forced response

Second-order measurement systems are subjected to a variety of forcing
functions f. In this lecture, we examine two common varieties: step forcing
and sinusoidal forcing. In what follows, we develop forced response yg,
solutions, which are the specific solution responses of systems to given inputs
and zero initial conditions: all initial conditions set to zero. In Lecture 03.08,
a method is presented for combining free and forced response.

03.05.1 Step response

Step forcing of the form f(t) = Kug(t), where K € R and u is the unit step
function, models abrupt changes to the input (measurand). The solution
is found by applying zero initial conditions (y(0) = 0 and y(0) = 0) to the
general solution. If the roots of the characteristic equation A; and A, are
distinct, the forced response is

K 1
Ysolt) = o <1 B vy (ApeMt 7\16}\2t)) (03.23)
where
A, A2 = —Cwn £ wnV 2 —1. (03.24)

Once again, there are five possibilities for the location of the roots of
the characteristic equation A; and A, all determined by the value of
(. However, there are three important cases for measurement systems:
underdamped, critically damped, and overdamped.

C € (0,1) underdamped In this case, the roots are distinct and complex:
7\1, ?\2 = —Cwn + jwd. (0325)

From Equation 03.23, the forced step response is

K e Cwnt
where the phase 1 is
C
= arctan ——. 03.27
v — (03.27)

This response overshoots, oscillates about, and decays to K/ wﬁ.
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¢ = 1 critically damped The roots are equal and real:
7\1 ’ 7\2 = —Wn (0328)

so the forced step of Equation 03.23 must be modified; it reduces to
K
Ygo(t) = o (1—e "1+ wnt)). (03.29)

This response neither oscillates nor overshoots its steady-state of %,
but just barely. )

¢ € (1,00) overdamped In this case, the roots are distinct and real, given by
Equation 03.24. The forced step given by Equation 03.23 is the sum of
two decaying real exponentials. These responses neither overshoot
nor oscillate about their steady-state of K/w2. With increasing ¢,
approach to steady-state slows.

Figure 03.8 displays the forced step response results. These responses
are inverted versions of the free responses of 03.04.1. Note that a small
damping ratio results in overshooting and oscillation about the steady-state
value. In contrast, large damping ratio results in neither overshoot nor
oscillation. However, both small and large damping ratios yield responses
that take longer durations to approach equilibrium than damping ratios
near unity. For this reason, the damping ratio of a measurement system
should be close to ¢ = 1. There are tradeoffs on either side of one. Slightly
less yields faster responses that overshoot a small amount. Slightly greater
than one yields slower responses less prone to oscillation.

03.05.2 Sinusoidal response

Here we consider only steady-state sinusoidal response, allowing us to
focus on frequency-domain considerations. The second-order system
transfer function, found from the Laplace transform of Equation 03.12, from
input u (generating forcing function f(t) = Ku(t)) to output y has the form
K/w?

= et wl (03.30)

H(s)

The frequency response function H(jw) is found via the substitution
s — jw, where w is the input sinusoidal frequency:

K/w?

i) = 5w/ + 5 2tw/an)’

(03.31)
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Figure 03.8: forced step response yg (t) of a second-order system for different values of ¢.
Underdamped, critically damped, and overdamped cases are displayed.

Writing this in terms of a magnitude and phase,
2
K/ and (03.32a)
V0 = (@/wn)2)? + (20w/wn)?
—2Cw/wn
T— (w/wn)?’

Hjw)l =

/H({jw) = arctan (03.32b)

These functions are plotted in Figure 03.9 for a range of . Note espe-
cially that the magnitude |[H(jw)| is near unity for low frequency, peaks (for
underdamped systems) near wy,, and tapers to zero high frequency. This
corresponds to amplitude ratios between the input sinusoidal amplitude
and output sinusoidal amplitude.

The phase ZH(jw) is near zero for low frequency is —90 deg at wn, and
approaches —180 deg for high frequency. This corresponds to a phase lag
between the input and output sinusoids.

For input u(t) = Asin(wt + ¢), the steady-state response yss can be
found directly from the frequency response:

Yss(t) = AlHGw)|sin(wt + ¢ + ZH(jw)). (03.33)

We use the same metric as before for the nearness of [H(jw)| to unity—
the dynamic error—
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Figure 03.9: the magnitude and phase of the frequency response function H(jw).

When b(w) ~ 0, the input (measurand) amplitude and output (indi-
cation) amplitude are approximately equal. Note that, according to Fig-
ure 03.9, when (w) ~ 0 (i.e. [H(jw)| ~ 1), the phase lag (and therefore the
time lag) is relatively small. This is ideal for second-order measurement
systems.
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