Lecture 04.03 Basic probability theory

The *sample space* Ω of an experiment is the set representing all possible **sample space** outcomes of the experiment. If a coin is flipped, the sample space is $\Omega = \{H, T\}$, where H is *heads* and T is *tails*. If a coin is flipped twice, the sample space could be

However, *the same experiment can have different sample spaces*. For instance, for two coin flips, we could also choose

We base our choice of Ω on the problem at hand.

An *event* is a subset of the sample space. That is, an event corresponds **event** to a yes-or-no question about the experiment. For instance, event A (remember: $A \subseteq \Omega$) in the coin flipping experiment (two flips) might be $A = \{HT, TH\}$. A is an event that corresponds to the question, "Is the second flip different than the first?" A is the event for which the answer is "yes."

04.03.1 Algebra of events

Because events are sets, we can perform the usual set operations with them.

Example 04.03-2	l set operat	tions with e	vents	
Consider a toss of a single die. We choose the sample space to be $\Omega = \{1, 2, 3, 4, 5, 6\}$. Let the following define events.				
$A \equiv \{\text{the result is even}\} = \{2, 4, 6\}$ $B \equiv \{\text{the result is greater than } 2\} = \{3, 4, 5, 6\}.$				
Find the following event combinations:				
$A \cup B$	$A \cap B$	$A \setminus B$	$B \setminus A$	$\overline{A} \setminus B.$

Chapter 04 Probability, statistics, and estimation Lecture 04.03 Basic probability theory

event class	The <i>event class</i> \mathbb{F} is often defined as the set of all subsets of Ω . (It's actually more complicated, but we'll ignore that.) So \mathcal{F} is the set of all possible events given a sample sample space Ω . When referring to an event, we often state that it is an element of \mathcal{F} . For instance, we might say an event $A \in \mathcal{F}$.
probability measure	We're finally ready to assign probabilities to events. We define the <i>probability measure</i> $P : \mathcal{F} \rightarrow [0, 1]$ to be a function satisfying the following conditions.
	 For every event A ∈ 𝔅, the probability measure of A is greater than zero—i.e. P(A) ≥ 0. If an event is the entire sample space, its probability measure is unity—i.e. if A = Ω, P(A) = 1. If events A₁, A₂, are disjoint sets (no elements in common), then P(A₁ ∪ A₂ ∪) = P(A₁) + P(A₂) +
probability space	The three structures we've defined thus far— Ω (sample space), \mathcal{F} (event class), and P (probability measure)—are called the <i>probability space</i> (Ω , \mathcal{F} , P). We conclude with the basics by observing four facts that can be proven from the definitions above.
	1.
	2. 3.

4.