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Lecture 04.11 Estimation of sample mean and variance

Ahem.3

04.11.0.1 Estimation and sample statistics

The mean and variance definitions, above, apply only to a random variable
for which we have a theoretical probability distribution. Typically, it is not
until after having performed many measurements of a random variable
that we can assign a good distribution model. Until then, measurements
can help us estimate aspects of the data. We usually start by estimating
basic parameters such as mean and variance before estimating a probability
distribution.

There are two key aspects to randomness in the measurement of a
random variable. First, of course, there is the underlying randomness
with its probability distribution, mean, standard deviation, etc., which we
call the population statistics. Second, there is the statistical variability that
is due to the fact that we are estimating the random variable’s statistics—
called its sample statistics—from some sample. Statistical variability are
decreased with greater sample size and number of samples, whereas the
underlying randomness of the random variable does not decrease. Instead,
our estimates of its probability distribution and statistics improve.

04.11.0.2 Sample mean, variance, and standard deviation

The arithmetic mean or sample mean of a measurand with sample size N,
represented by random variable X, is defined as

x =
1

N

N∑
i=1

xi. (04.16)

If the sample size is large, x → mX (the sample mean approaches the
mean). The population mean is another term for the mean µX, which is equal
to

3The source for this exercise lecture is in a Matlab kernel Jupyter notebook. For more
information, see jupyter.org. See ricopic.one/measurement/notebooks for the source code
notebook. Note, however, that running the Matlab code in the usual m-file environment is
much easier.
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mX = lim
N→∞ 1

N

N∑
i=1

xi. (04.17)

Recall that the definition of the mean is mX = E(x).
The sample variance of a measurand represented by random variable X

is defined as

S2X =
1

N− 1

N∑
i=1

(xi − x)
2. (04.18)

If the sample size is large, S2X → σ2X (the sample variance approaches the
variance). The population variance is another term for the variance σ2X, and
can be expressed as

σ2X = lim
N→∞ 1

N− 1

N∑
i=1

(xi − x)
2. (04.19)

Recall that the definition of the variance is σ2X = E((X−mX)
2).

The sample standard deviation of a measurand represented by random
variable X is defined as

SX =
√
S2X. (04.20)

If the sample size is large, SX → σX (the sample standard deviation
approaches the standard deviation). The population standard deviation is
another term for the standard deviation σX, and can be expressed as

σX = lim
N→∞

√
S2X. (04.21)

Recall that the definition of the standard deviation is σX =
√
σ2X.

04.11.0.3 Sample statistics as random variables

There is an ambiguity in our usage of the term “sample.” It can mean just
one measurement or it can mean a collection of measurements gathered
together. Hopefully, it is clear from context.
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In the latter sense, often we collect multiple samples, each of which has
its own sample mean Xi and standard deviation SXi . In this situation, Xi
and SXi are themselves random variables (meta af, I know). This means
they have their own sample means Xi and SXi and standard deviations SXi
and SSXi .

The mean of means Xi is equivalent to a mean with a larger sample size
and is therefore our best estimate of the mean of the underlying random
process. The mean of standard deviations SXi is our best estimate of
the standard deviation of the underlying random process. The standard
deviation of means SXi is a measure of the spread in our estimates of the
mean. It is our best estimate of the standard deviation of the statistical
variation and should therefore tend to zero as sample size and number of
samples increases. The standard deviation of standard deviations SSXi is
a measure of the spread in our estimates of the standard deviation of the
underlying process. It should also tend to zero as sample size and number
of samples increases.

Let N be the size of each sample. It can be shown that the standard
deviation of the means SXi can be estimated from a single sample standard
deviation:

SXi ≈
SXi√
N
. (04.22)

This shows that as the sample size N increases, the statistical variability
of the mean decreases (and in the limit approaches zero).

04.11.0.4 Nonstationary signal statistics

The sample mean, variance, and standard deviation definitions, above,
assume the random process is stationary—that is, its population mean does
not vary with time. However, a great many measurement signals have
populations that do vary with time, i.e. they are nonstationary. Sometimes
the nonstationarity arises from a “drift” in the dc value of a signal or some
other slowly changing variable. But dynamic signals can also change in a
recognizable and predictable manner, as when, say, the temperature of a
room changes when a window is opened or when a water level changes
with the tide.

Typically, we would like to minimize the effect of nonstationarity on the
signal statistics. In certain cases, such as drift, the variation is a nuissance
only, but other times it is the point of the measurement.
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Two common techniques are used, depending on the overall type of
nonstationarity. If it is periodic with some known or estimated period,
the measurement data series can be “folded” or “reshaped” such that the
ith measurement of each period corresponds to the ith measurement of all
other periods. In this case, somewhat counterintuitively, we can consider
the ith measurements to correspond to a sample of size N, where N is the
number of periods over which measurements are made.

When the signal is aperiodic, we often simply divide it into “small”
(relative to its overall trend) intervals over which statistics are computed,
separately.

Note that in this discussion, we have assumed that the nonstationarity
of the signal is due to a variable that is deterministic (not random).

04.11.0.5 Example: measurement of Gaussian noise on nonstationary signal

Consider the measurement of the temperature inside a desktop computer
chassis via an inexpensive thermistor, a resistor that changes resistance with
temperature. The processor and power supply heat the chassis in a manner
that depends on processing demand. For the test protocol, the processors
are cycled sinusoidally through processing power levels at a frequency of
50 mHz for nT = 12 periods and sampled at 1 Hz. Assume a temperature
fluctuation between about 20 and 50 C and Gaussian noise with standard
deviation 4 C. Consider a sample to be the multiple measurements of a
certain instant in the period.

1. Generate and plot simulated temperature data as a time series and
as a histogram or frequency distribution. Comment on why the
frequency distribution sucks.

2. Compute the sample mean and standard deviation for each sample in
the cycle.

3. Subtract the mean from each sample in the period such that each
sample distribution is centered at zero. Plot the composite frequency
distribution of all samples, together. This represents our best estimate
of the frequency distribution of the underlying process.

4. Plot a comparison of the theoretical mean, which is 35, and the sample
mean of means with an error bar. Vary the number of samples nT and
comment on its effect on the estimate.

5. Plot a comparison of the theoretical standard deviation and the
sample mean of sample standard deviations with an error bar. Vary
the number of samples nT and comment on its effect on the estimate.
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6. Plot the sample means over a single period with error bars of ± one
sample standard deviation of the means. This represents our best
estimate of the sinusoidal heating temperature. Vary the number of
samples nT and comment on the estimate.

clear; close all; % clear kernel

Generate the temperature data The temperature data can be generated
by constructing an array that is passed to a sinusoid, then “randomized”
by Gaussian random numbers. Note that we add 1 to np and n to avoid the
sneaky fencepost error.

f = 50e-3; % Hz ... sinusoid frequency
a = 15; % C ... amplitude of oscillation
dc = 35; % C ... dc offset of oscillation
fs = 1; % Hz ... sampling frequency
nT = 12; % number of sinusoid periods
s = 4; % C ... standard deviation
np = fs/f+1; % number of samples per period
n = nT*np+1; % total number of samples

t_a = linspace(0,nT/f,n); % time array
sin_a = dc + a*sin(2*pi*f*t_a); % sinusoidal array
rng(43); % seed the random number generator
noise_a = s*randn(size(t_a)); % Gaussian noise
signal_a = sin_a + noise_a; % sinusoid + noise

Now that we have an array of “data,” we’re ready to plot.

h = figure;
p = plot(t_a,signal_a,'o-',...

'Color',[.8,.8,.8],...
'MarkerFaceColor','b',...
'MarkerEdgeColor','none',...
'MarkerSize',3);

xlabel('time (s)');
ylabel('temperature (C)');
hgsave(h,'figures/temp');

This is something like what we might see for continuous measurement
data. Now, the histogram.
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Figure 04.8: temperature over time
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Figure 04.9: a poor histogram due to unstationarity of the signal.

h = figure;
histogram(signal_a,...

30, ... % number of bins
'normalization','probability'... % for PMF

);
xlabel('temperature (C)')
ylabel('probability')
hgsave(h,'figures/temp');

This sucks because we plot a frequency distribution to tell us about the
random variation, but this data includes the sinusoid.
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Sample mean, variance, and standard deviation To compute the sample
mean µ and standard deviation s for each sample in the period, we must
“pick out” the nT data points that correspond to each other. Currently,
they’re in one long 1 × n array signal_a. It is helpful to reshape the data
so it is in an nT × np array, which each row corresponding to a new period.
This leaves the correct points aligned in columns. It is important to note that
we can do this “folding” operation only when we know rather precisely
the period of the underlying sinusoid. It is given in the problem that it is
a controlled experiment variable. If we did not know it, we would have to
estimate it, too, from the data.

signal_ar = reshape(signal_a(1:end-1)',[np,nT])'; % reshape
size(signal_ar) % check size
signal_ar(1:3,1:4) % print first three rows of first four columns

ans =

12 21

ans =

30.2718 40.0946 40.8341 44.7662
40.1836 37.2245 49.4076 46.1137
40.0571 40.9718 46.1627 41.9145

Define the mean, variance, and standard deviation functions as “anon-
mymous functions.” We “roll our own.” These are not as efficient or flexible
as the built-in Matlab functions mean, var, and std, which should typically
be used.

my_mean = @(vec) sum(vec)/length(vec);
my_var = @(vec) sum((vec-my_mean(vec)).^2)/(length(vec)-1);
my_std = @(vec) sqrt(my_var(vec));

Now the sample mean, variance, and standard deviations can be
computed. We proceed by looping through each column of the reshaped
signal array.

mu_a = NaN*ones(1,np); % initialize mean array
var_a = NaN*ones(1,np); % initialize var array
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s_a = NaN*ones(1,np); % initialize std array

for i = 1:np % for each column
mu_a(i) = my_mean(signal_ar(:,i));
var_a(i) = my_var(signal_ar(:,i));
s_a(i) = sqrt(var_a(i)); % touch of speed

end

Composite frequency distribution The columns represent samples. We
want to subtract the mean from each column. We use repmat to reproduce
mu_a in nT rows so it can be easily subtracted.

signal_arz = signal_ar - repmat(mu_a,[nT,1]);
size(signal_arz) % check size
signal_arz(1:3,1:4) % print first three rows of first four columns

ans =

12 21

ans =

-5.0881 0.9525 -0.2909 -1.5700
4.8237 -1.9176 8.2826 -0.2225
4.6972 1.8297 5.0377 -4.4216

Now that all samples have the same mean, we can lump them into
one big bin for the frequency distribution. There are some nice built-in
functions to do a quick reshape and fit.

% resize
signal_arzr = reshape(signal_arz,[1,nT*np]);
size(signal_arzr) % check size
% fit
pdfit_model = fitdist(signal_arzr','normal'); % do a fit
x_a = linspace(-15,15,100);
pdfit_a = pdf(pdfit_model,x_a);
pdf_a = normpdf(x_a,0,s); % theoretical pdf

ans =

1 252
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Figure 04.10: PMF and estimated and theoretical PDFs.

Plot!

h = figure;
histogram(signal_arzr,...

round(s*sqrt(nT)), ... % number of bins
'normalization','probability'... % for PMF

);
hold on
plot(x_a,pdfit_a,'b-','linewidth',2); hold on
plot(x_a,pdf_a,'g--','linewidth',2);
legend('pmf','pdf est.','pdf')
xlabel('zero-mean temperature (C)')
ylabel('probability mass/density')
hgsave(h,'figures/temp');

Means comparison The sample mean of means is simply the following.

mu_mu = my_mean(mu_a)

mu_mu =

35.1175

The standard deviation that works as an error bar, which should reflect
how well we can estimate the point plotted, is the standard deviation of the
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means. It is difficult to compute this directly for a nonstationary process.
We use the estimate given above and improve upon it by using the mean of
standard deviations instead of a single sample’s standard deviation.

s_mu = mean(s_a)/sqrt(nT)

s_mu =

1.1580

Now, for the simple plot.

h = figure;
bar(mu_mu); hold on % gives bar
errorbar(mu_mu,s_mu,'r','linewidth',2) % gives error bar
ax = gca; % current axis
ax.XTickLabels = {'$\overline{\overline{X}}$'};
ax.TickLabelInterpreter = 'latex';
hgsave(h,'figures/temp');

Standard deviations comparison The sample mean of standard devia-
tions is simply the following.

mu_s = my_mean(s_a)

mu_s =

4.0114

The standard deviation that works as an error bar, which should reflect
how well we can estimate the point plotted, is the standard deviation of the
standard deviations. We can compute this directly.

s_s = my_std(s_a)

s_s =

0.8495

Now, for the simple plot.
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Figure 04.11: (left) sample mean of sample means and (right) sample standard deviation of
sample means.

h = figure;
bar(mu_s); hold on % gives bar
errorbar(mu_s,s_s,'r','linewidth',2) % gives error bar
ax = gca; % current axis
ax.XTickLabels = {'$\overline{S_X}$'};
ax.TickLabelInterpreter = 'latex';
hgsave(h,'figures/temp');

Plot a period with error bars Plotting the data with error bars is fairly
straightforward with the built-in errorbar function. The main question
is “which standard deviation?” Since we’re plotting the means, it makes
sense to plot the error bars as a single sample standard deviation of the
means.

h = figure;
e1 = errorbar(t_a(1:np),mu_a,s_mu*ones(1,np),'b'); hold on
t_a2 = linspace(0,1/f,101);
e2 = plot(t_a2,dc + a*sin(2*pi*f*t_a2),'r-');
xlim([t_a(1),t_a(np)])
grid on
xlabel('folded time (s)')
ylabel('temperature (C)')
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Figure 04.12: sample means over a period.

legend([e1 e2],'sample mean','population mean','Location','NorthEast')
hgsave(h,'figures/temp');
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