Lecture 05.02 Functional propagation of uncertainty

Often, we use a measurement to estimate a quantity that is functionally dependent on the measurand. For instance, perhaps we would like to estimate the volume V of an object that—would you look at that—happens to be cubic with side length ℓ , so its volume could be reasonably estimated to be $V(\ell) = \ell^3$. Your measurement of ℓ has some associated uncertainty u_{ℓ} , certainly. How does that propagate to an uncertainty u_V in V?

Recall that uncertainty is half of a *symmetric* interval centered at the best estimate of the value. When you drop an interval symmetric about some value \tilde{x} into a nonlinear function f, that interval comes out (usually) *asymmetric* about \tilde{x} .

asymmetry

Let's demonstrate this with our cubic volume. Let the 95% uncertainty in $\overline{\ell}$ be u_{ℓ} , such that there is a 95% probability that a volume measurement value

Now, run that interval $\overline{\ell} \pm u_{\ell}$ through the volume function V:

...this isn't symmetric about the mean $V(\bar{\ell})$ so we linearize ...which is what we also do for a multivariate function, too, and multiply each independent variable's partial derivative slope (evaluated at the mean) by the uncertainty of that variable's measurement. Then combine with RSS.