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Lecture 05.03 Rigorous uncertainty analysis

We have learned about confidence from a statistical point-of-view. Based onconfidence

sample variability, we might have P% confidence in a given measurement.
As we have learned, an estimate of the variability of the random variable
X—in this case, the measurand—is given by its sample standard deviationsample standard

deviation SX. In the case of multiple samples, its best estimate was the sample mean
sample mean of

standard
deviations

of standard deviations SX. The best estimate of the value of X (that is, it’s
mean µX) was the sample mean X. In the case of multiple samples, it was the

sample mean sample mean of sample means X. Finally, the best estimate of the variability
of the mean was the sample standard deviation of sample means SX. Furthersample standard

deviation of sample
means

recall the nice estimate of SX from a single sample with size N:

As we can see, as sample size N increases, SX decreases. This type
of error in a measurement is called random error and gives rise to randomrandom error

random uncertainty uncertainty ur, related to what we have called confidence intervals about the
confidence

intervals
best estimate of the mean, such as, for a single sample of size N,

x ∈ X± tν,PSX (P%) (05.2)

where ν = N−1 is the degree of freedom and P% is our confidence based on
the probability P% of a Student random variable X taking a value x within
tν,P standard deviations of the mean. The random uncertainty is a half-
interval

ur = tν,Ps (P%) (05.3)

where s = SX (68%) is the standard random uncertainty, which is simply onestandard random
uncertainty standard deviation of the means.

However, error can arise from more than randomness. Other sources
arise that bias the measured values—say, up or down—from the mean. Thisbias

is called systematic error and generates systematic uncertainty ub (becausesystematic error
systematic
uncertainty

bias) and systematic standard uncertainty b that has 68% confidence. Let

systematic
standard

uncertainty

a measurement instrument’s manual list an elemental error B, which
(unless otherwise stated in the manual) is assigned a 95% confidence; the
systematic standard uncertainty is b = B/2. Assuming a large sample was
used to estimate B, we might report an uncertainty associated with that
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error to be ub = 2b with 95% confidence (we are assuming a Gaussian
distribution, but the distribution shape has little effect).

Let’s consider systematic error a bit more, through an example. A scale
might be systematically reading high (I know my scale does, especially
around the holidays). This can be identified and mitigated by calibration calibration

to a standard. The National Institute of Standards and Technology (NIST)
calibrates weights. Let’s say you have a 10 kg NIST calibrated weight
(such an object is called a standard) with one-normal-standard deviation standard

confidence ±200 ·10−9 kg. Let’s say I weigh itN = 10 times on my scale and
the sample mean x = 10.5 kg and sample standard deviation Sx = 0.3 kg.
The calibration allows me to adjust the bias on my scale by 10− 10.5 = −0.5

kg.

However, there remain two systematic uncertainties associated with my
scale’s bias: (1) NIST’s standard uncertainty bstd = 200 · 10−9 kg due to
NIST’s measurement of the standard 10 kg weight and (2) our calibration
standard uncertainty

The systematic standard uncertainties are combined in the usual RSS way
(although the calibration uncertainty clearly dominates):

A measurement sample of sizeM = 23 of an object with unknown mass
m is then performed with the calibrated scale. The sample mean ism = 9.04

kg and sample standard deviation Sm = 1 kg. How confident can we be
in the result? Certainly both the systematic and random certainties must
contribute. Before we can consider their combined effect, let’s compute the
standard random uncertainty:
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We combine the systematic and random uncertainties in the usual RSS
way:

Since these are standard uncertainties, we must find its effective degree of
freedom ν before assigning it a confidence with a Student t-score. How
can we estimate this from these different sources of uncertainty, each with
their own degree of freedom? A method of estimating the effective degree
of freedom is given by (Figliola and Beasley, 2015) and is presented in
an equivalent form here. Let a measurement have J random standard
uncertainties sj with corresponding degrees of freedom νsj ; further, let it
have K systematic standard uncertainties bk with corresponding degrees of
freedom νbk ; then the effective degree of freedom is

ν =

 J∑
j=1

s2j +

K∑
k=1

b2k

2
J∑
j=1

s4j /νsj +

K∑
k=1

b4k/νbk

. (05.4)

From above, we have J = 1 and K = 2 and standard uncertainties given
in Table 05.1. This gives ν = 29.0. That’s close enough to 30 to call it “large”
and assign a 95% confidence uncertainty

So, using our 95% confidence uncertainty for our interval, our best estimate
for the mass is
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Table 05.1: summary of standard uncertainties for a fictional mass measure-
ments.

uncertainty value s or b deg. of freedom
s 0.209 kg 22

bstd 200 · 10−9 kg ∞
bcal 0.0949 kg 9

05.03.1 An extensive example

Consider a temperature measurement made with a linear calibrated
temperature-voltage transducer. The calibration data is given as t_cal
(units C) and v_cal (units V). The measurement voltage sample is given
as a time series v_a (units V) versus time_a (units s), where we can
assume relatively constant measurement conditions and a stationary
process.

The voltmeter (used for calibration and for data) and the thermometer
(used for calibration) have the systematic uncertainties defined below.

bv_1 = .1; % V ... voltmeter absolute uncertainty
bv_2 = .05; % V ... voltmeter linearity uncertainty
bt_1 = .05; % C ... thermometer absolute uncertainty

05.03.1.1 Calibration curve and its uncertainty

Let’s first consider the calibration data.

disp('sample data (time,voltage)')
disp([time_a;v_a]')

sample data (time,voltage)
0 5.7959

1.8182 5.5286
3.6364 5.2110
5.4545 5.4191
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7.2727 5.6164
9.0909 5.6746

10.9091 5.4349
12.7273 5.8535
14.5455 5.6782
16.3636 5.7058
18.1818 5.5820
20.0000 6.3077

Let’s perform a linear regression analysis on the calibration data to find
a calibration curve. The standard uncertainty of a polynomial regression of
orderm−1 and data with values ỹi approximating calibration curve values
yi with sample size N is (Figliola and Beasley, 2015, Equation 4.35)

sfit =

√√√√√√
N∑
i=1

(ỹi − yi)
2

ν
(05.5)

where the degree of freedom ν = N− (m+ 1). For a linear fit, m = 2.

pf_cal = polyfit(v_cal,t_cal,1)
k_trans = pf_cal(1); % this is the transducer gain
p_cal = polyval(pf_cal,v_cal);
d_cal = p_cal - t_cal;
nu_cal = length(d_cal)-(2+1)
s_cal = sqrt((sum(d_cal.^2))/nu_cal)

pf_cal =
4.9994 -0.2028

nu_cal =
22

s_cal =
0.4712

h = figure;
p = plot(v_cal,t_cal,'x'); hold on
p2 = plot(v_cal,p_cal,'r-');
grid on;
xlabel('voltage (V)')
ylabel('temperature (C)')
hgsave(h,'figures/temp');
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05.03.1.2 Random uncertainty

Another source of random error is the finite sample size. It can be
computed, in the usual way, as the sample standard deviation of the sample
means. And first, of course, the sample v_a must be passed through the
calibration curve pf_cal.

t_a = polyval(pf_cal,v_a);
mu_t = mean(t_a)
s_mu_t = std(t_a)/length(t_a)
nu_a = length(t_a)-1

mu_t =
28.0473

s_mu_t =
0.1132

nu_a =
11

The total random uncertainty is the root-sum-square (RSS) combination
of the calibration and finite sample size uncertainties.
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Figure 05.1: voltage-temperature transducer calibration data with its linear fit.
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s = sqrt(s_cal^2+s_mu_t^2)

s =
0.4846

05.03.1.3 Systematic uncertainty

The total systematic uncertainty is an RSS combination of those system-
atic uncertainties described in the problem statement. The transducer gain,
found from the calibration curve, can be used to convert voltage uncertain-
ties to temperature uncertainties.

b = sqrt(2*(k_trans*bv_1)^2+2*(k_trans*bv_2)^2+bt_1^2)

b =
0.7921

Note the factors of two. These are due to the voltmeter’s use in the
calibration and in the sample.

05.03.1.4 Total uncertainty

The total standard uncertainty is the RSS combination of the standard
random and systematic uncertainties.

u_t = sqrt(s^2+b^2)

u_t =
0.9286

In order to assign a confidence interval via a t-score, we can use
Equation 05.4 to compute the effective degree of freedom of the standard
uncertainty. Given no information to the contrary, we assume the degree of
freedom for each systematic uncertainty is high.

nu_t = (u_t^2)^2/(s_cal^4/nu_cal+s_mu_t^4/nu_a)

nu_t =
329.5059
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This is much greater than 30, so we can assume the distribution is
Gaussian and use a z-score. Let’s assign a 95% confidence uncertainty.

u_t_95 = 2*u_t

u_t_95 =
1.8571

So a confidence interval for the estimate of the temperature is as follows.

mu_t_int = mu_t + [-1,1]*u_t_95

This is the result of our full uncertainty analysis.
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