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2.14 Analysis and Design of Feedback Control Systems

Introduction to Frequency Domain Processing

1 Introduction - Superposition

In this set of notes we examine an alternative to the time-domain convolution operations describing
the input-output operations of a linear processing system. The methods developed here use Fourier
techniques to transform the temporal representation f(t) to a reciprocal frequency domain space
F (jω) where the difficult operation of convolution is replaced by simple multiplication. In addition,
an understanding of Fourier methods gives qualitative insights to signal processing techniques such
as filtering.

Linear systems, by definition, obey the principle of superposition for the forced component of
their responses:

If linear system is at rest at time t = 0, and is subjected to an input u(t) that is
the sum of a set of causal inputs, that is u(t) = u1(t) + u2(t) + . . ., the response y(t)
will be the sum of the individual responses to each component of the input, that is
y(t) = y1(t) + y2(t) + . . .

Suppose that a system input u(t) may be expressed as a sum of complex n exponentials

u(t) =
n∑

i=1

aie
sit,

where the complex coefficients ai and constants si are known. Assume that each component is
applied to the system alone; if at time t = 0 the system is at rest, the solution component yi(t) is
of the form

yi(t) = (yh (t))i + aiH(si)esit

where (yh(t))i is a homogeneous solution. The principle of superposition states that the total
response yp(t) of the linear system is the sum of all component outputs

yp(t) =
n∑

i=1

yi(t)

=
n∑

i=1

(yh (t))i + aiH(si)esit

Example

Find the response of the first-order system with differential equation

dy

dt
+ 4y = 2u

to an input u(t) = 5e−t + 3e−2t, given that at time t = 0 the response is y(0) = 0.
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Solution: The system transfer function is

H(s) =
2

s + 4
. (1)

The system homogeneous response is

yh(t) = Ce−4t (2)

where C is a constant, and if the system is at rest at time t = 0, the response to an
exponential input u(t) = aest is

y(t) =
2a

s + 4

(
est − e−4t

)
. (3)

The principle of superposition says that the response to the input u(t) = 5e−t + 3e−2t

is the sum of two components, each similar to Eq.(3), that is

y(t) =
10
3

(
e−t − e−4t

)
+

6
2

(
e−2t − e−4t

)
=

10
3
e−t + 3e−2t − 19

3
e−4t (4)

In this chapter we examine methods that allow a function of time f(t) to be represented as a sum
of elementary sinusoidal or complex exponential functions. We then show how the system transfer
function H(s), or the frequency response H(jω), defines the response to each such component,
and through the principle of superposition defines the total response. These methods allow the
computation of the response to a very broad range of input waveforms, including most of the
system inputs encountered in engineering practice.

The methods are known collectively as Fourier Analysis methods, after Jean Baptiste Joseph
Fourier, who in the early part of the 19th century proposed that an arbitrary repetitive function
could be written as an infinite sum of sine and cosine functions [1]. The Fourier Series representation
of periodic functions may be extended through the Fourier Transform to represent non-repeating
aperiodic (or transient) functions as a continuous distribution of sinusoidal components. A further
generalization produces the Laplace Transform representation of waveforms.

The methods of representing and analyzing waveforms and system responses in terms of the
action of the frequency response function on component sinusoidal or exponential waveforms are
known collectively as the frequency-domain methods. Such methods, developed in this chapter,
have important theoretical and practical applications throughout engineering, especially in system
dynamics and control system theory.

2 Fourier Analysis of Periodic Waveforms

Consider the steady-state response of linear time-invariant systems to two periodic waveforms, the
real sinusoid f(t) = sinωt and the complex exponential f(t) = ejωt. Both functions are repetitive;
that is they have identical values at intervals in time of t = 2π/ω seconds apart. In general a
periodic function is a function that satisfies the relationship:

f(t) = f(t + T ) (5)
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Figure 1: Examples of periodic functions of time.

for all t, or f(t) = f(t + nT ) for n = ±1,±2,±3, ..... Figure 1 shows some examples of periodic
functions.

The fundamental angular frequency ω0 (in radians/second) of a periodic waveform is defined
directly from the period

ω0 =
2π
T

. (6)

Any periodic function with period T is also be periodic at intervals of nT for any positive
integer n. Similarly any waveform with a period of T/n is periodic at intervals of T seconds.
Two waveforms whose periods, or frequencies, are related by a simple integer ratio are said to be
harmonically related.

Consider, for example, a pair of periodic functions; the first f1(t) with a period of T1 = 12
seconds, and the second f2(t) with a period of T2 = 4 seconds. If the fundamental frequency ω0

is defined by f1(t), that is ωo = 2π/12, then f2(t) has a frequency of 3ω0. The two functions
are harmonically related, and f2(t) is said to have a frequency which is the third harmonic of the
fundamental ω0. If these two functions are summed together to produce a new function g(t) =
f1(t) + f2(t), then g(t) will repeat at intervals defined by the longest period of the two, in this
case every 12 seconds. In general, when harmonically related waveforms are added together the
resulting function is also periodic with a repetition period equal to the fundamental period.

Example

A family of waveforms gN (t) (N = 1, 2 . . . 5) is formed by adding together the first N
of up to five component functions, that is

gN (t) =
N∑

n=1

fn(t) 1 < N ≤ 5

where

f1(t) = 1
f2(t) = sin(2πt)

f3(t) =
1
3
sin(6πt)

f4(t) =
1
5
sin(10πt)

f5(t) =
1
7
sin(14πt).
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Figure 2: Synthesis of a periodic waveform by the summation of harmonically related components

The first term is a constant, and the four sinusoidal components are harmonically re-
lated, with a fundamental frequency of ω0 = 2π radians/second and a fundamental
period of T = 2π/ω0 = 1 second. (The constant term may be considered to be periodic
with any arbitrary period, but is commonly considered to have a frequency of zero radi-
ans/second.) Figure 2 shows the evolution of the function that is formed as more of the
individual terms are included into the summation. Notice that in all cases the period
of the resulting gN (t) remains constant and equal to the period of the fundamental
component (1 second). In this particular case it can be seen that the sum is tending
toward a square wave.

The Fourier series [2,3] representation of a real periodic function f(t) is based upon the summation
of harmonically related sinusoidal components. If the period is T , then the harmonics are sinu-
soids with frequencies that are integer multiples of ω0, that is the nth harmonic component has a
frequency nω0 = 2πn/T , and can be written

fn(t) = an cos(nω0t) + bn sin(nω0t) (7)
= An sin(nω0t + φn). (8)

In the first form the function fn(t) is written as a pair of sine and cosine functions with real coeffi-
cients an and bn. The second form, in which the component is expressed as a single sinusoid with
an amplitude An and a phase φn, is directly related to the first by the trigonometric relationship:

An sin(nω0t + φn) = An sinφn cos(nω0t) + An cosφn sin(nω0t).

Equating coefficients,

an = An sinφn

bn = An cosφn (9)
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and

An =
√
a2

n + b2n

φn = tan−1(an/bn). (10)

The Fourier series representation of an arbitrary periodic waveform f(t) (subject to some general
conditions described later) is as an infinite sum of harmonically related sinusoidal components,
commonly written in the following two equivalent forms

f(t) =
1
2
a0 +

∞∑
n=1

(an cos(nω0t) + bn sin(nω0t)) (11)

=
1
2
a0 +

∞∑
n=1

An sin(nω0t + φn). (12)

In either representation knowledge of the fundamental frequency ω0, and the sets of Fourier coeffi-
cients {an} and {bn} (or {An} and {φn}) is sufficient to completely define the waveform f(t).

A third, and completely equivalent, representation of the Fourier series expresses each of the
harmonic components fn(t) in terms of complex exponentials instead of real sinusoids. The Euler
formulas may be used to replace each sine and cosine terms in the components of Eq. (7) by a pair
of complex exponentials

fn(t) = an cos(nω0t) + bn sin(nω0t)

=
an

2

(
ejnω0t + e−jnω0t

)
+

bn

2j

(
ejnω0t − e−jnω0t

)

=
1
2

(an − jbn) ejnω0t +
1
2

(an + jbn) e−jnω0t

= Fne
jnω0t + F−ne

−jnω0t (13)

where the new coefficients

Fn = 1/2(an − jbn)
F−n = 1/2(an + jbn) (14)

are now complex numbers. With this substitution the Fourier series may be written in a compact
form based upon harmonically related complex exponentials

f(t) =
+∞∑

n=−∞
Fne

jnω0t. (15)

This form of the series requires summation over all negative and positive values of n, where the
coefficients of terms for positive and negative values of n are complex conjugates,

F−n = Fn, (16)

so that knowledge of the coefficients Fn for n ≥ 0 is sufficient to define the function f(t).
Throughout thrse notes we adopt the nomenclature of using upper case letters to represent the

Fourier coefficients in the complex series notation, so that the set of coefficients {Gn} represent the
function g(t), and {Yn} are the coefficients of the function y(t). The lower case coefficients {an}
and {bn} are used to represent the real Fourier coefficients of any function of time.
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Figure 3: Spectral representation of the waveform discussed in Example 3.

Example

A periodic function f(t) consists of five components

f(t) = 2 + 3 sin(100t) + 4 cos(100t) + 5 sin(200t + π/4) + 3 cos(400t).

It may be expressed as a finite complex Fourier series by expanding each term through
the Euler formulas

f(t) = 2 +
3
2j

(
ej100t − e−j100t

)
+

4
2

(
ej100t + e−j100t

)

+
5
2j

(
ej(200t+π/4) − e−j(200t+π/4)

)
+

3
2

(
ej400t + e−j400t

)

= 2 +
(

2 +
3
2j

)
ej100t +

(
2 − 3

2j

)
e−j100t

(
5

2
√

2
+

5
2
√

2j

)
ej200t +

(
5

2
√

2
− 5

2
√

2j

)
e−j200t

+
3
2
ej400t +

3
2
e−j400t.

The fundamental frequency is ω0 = 100 radians/second, and the time-domain function
contains harmonics n = 1, 2, 3, and 4. The complex Fourier coefficients are

F0 = 2

F1 = 2 − 3
2
j F−1 = 2 +

3
2
j

F2 =
5

2
√

2
(1 − 1j) F−2 =

5
2
√

2
(1 + 1j)

F3 = 0 F−3 = 0

F4 =
3
2

F−4 =
3
2
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The finite Fourier series may be written in the complex form using these coefficients as

f(t) =
5∑

n=−5

Fne
jn100t

and plotted with real and imaginary parts as in Fig. 3.

The values of the Fourier coefficients, in any of the three above forms, are effectively measures
of the amplitude and phase of the harmonic component at a frequency of nω0. The spectrum of a
periodic waveform is the set of all of the Fourier coefficients, for example {An} and {φn}, expressed
as a function of frequency. Because the harmonic components exist at discrete frequencies, periodic
functions are said to exhibit line spectra, and it is common to express the spectrum graphically with
frequency ω as the independent axis, and with the Fourier coefficients plotted as lines at intervals
of ω0. The first two forms of the Fourier series, based upon Eqs. (7) and (8), generate “one-sided”
spectra because they are defined from positive values of n only, whereas the complex form defined
by Eq. (15) generates a “two-sided” spectrum because its summation requires positive and negative
values of n. Figure 3 shows the complex spectrum for the finite series discussed in Example 2.

2.1 Computation of the Fourier Coefficients

The derivation of the expressions for computing the coefficients in a Fourier series is beyond the
scope of this book, and we simply state without proof that if f(t) is periodic with period T and
fundamental frequency ω0, in the complex exponential form the coefficients Fn may be computed
from the equation

Fn =
1
T

∫ t1+T

t1
f(t)e−jnω0tdt (17)

where the initial time t1 for the integration is arbitrary. The integral may be evaluated over any
interval that is one period T in duration.

The corresponding formulas for the sinusoidal forms of the series may be derived directly from
Eq. (17). From Eq. (14) it can be seen that

an = Fn + F−n

=
1
T

∫ t1+T

t1
f(t)

[
ejnω0t + e−jnω0t

]
dt

=
2
T

∫ t1+T

t1
f(t) cos(nω0t)dt (18)

and similarly

bn =
2
T

∫ t1+T

t1
f(t) sin(nω0t)dt (19)

The calculation of the coefficients for a given periodic time function f(t) is known as Fourier
analysis or decomposition because it implies that the waveform can be “decomposed” into its
spectral components. On the other hand, the expressions that express f(t) as a Fourier series
summation (Eqs. (11), (12), and (15)) are termed Fourier synthesis equations because the imply
that f(t) could be created (synthesized) from an infinite set of harmonically related oscillators.

Table 1 summarizes the analysis and synthesis equations for the sinusoidal and complex expo-
nential formulations of the Fourier series.
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Sinusoidal formulation Exponential formulation

Synthesis: f(t) =
1
2
a0 +

∞∑
n=1

(an cos(nω0t) + bn sin(nω0t)) f(t) =
+∞∑

n=−∞
Fne

jnω0t

Analysis: an =
2
T

∫ t1+T

t1
f(t) cos(nω0t)dt Fn =

1
T

∫ t1+T

t1
f(t)e−jnω0tdt

bn =
2
T

∫ t1+T

t1
f(t) sin(nω0t)dt

Table 1: Summary of analysis and synthesis equations for Fourier analysis and synthesis.

Example

Find the complex and real Fourier series representations of the periodic square wave
f(t) with period T ,

f(t) =

{
1 0 ≤ t < T/2,
0 T/2 ≤ t < T

as shown in Fig. 4.

�� � � 	� 
�

���

���

����

�

��� ���

�� �� � �! �� �� �� �� �� � � � � � � !  � �

�� �� � �! �� �� �� �� ��

� � � � � !  � �

���

���

��

��

�

���








�����

������

Figure 4: A periodic square wave and its spectrum.

Solution: The complex Fourier series is defined by the synthesis equation

f(t) =
+∞∑

n=−∞
Fne

jnω0t. (20)

In this case the function is non-zero for only half of the period, and the integration limits
can be restricted to this range. The zero frequency coefficient F0 must be computed
separately:

F0 =
1
T

∫ T/2

0
ej0dt =

1
2
, (21)
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and all of the other coefficients are:

Fn =
1
T

∫ T/2

0
(1)e−jnω0tdt

=
−1

jnω0T

[
e−jnω0t

∣∣∣T/2

0

=
j

2nπ

[
e−jnπ − 1

]
(22)

since ω0T = 2π. Because e−jnπ = −1 when n is odd and +1 when n is even,

Fn =

{
−j/nπ, if n is odd;
0, if n is even.

The square wave can then be written as the complex Fourier series

f(t) =
1
2

+
∞∑

m=1

j

(2m− 1)π

(
e−j(2m−1)ω0t − ej(2m−1)ω0t

)
. (23)

where the terms Fne
jωnt and F−ne

−jωnt have been combined in the summation.

If the Euler formulas are be used to expand the complex exponentials, the cosine terms
cancel, and the resulting series involves only sine terms:

f(t) =
1
2

+
∞∑

m=1

2
(2m− 1)π

sin ((2m− 1)ω0t) (24)

=
1
2

+
2
π

(
sin(ω0t) +

1
3

sin(3ω0t) +
1
5

sin(5ω0t) +
1
7

sin(7ω0t) + . . .

)
.

Comparison of the terms in this series with the components of the waveform synthesized
in Example 2, and shown in Fig. 2, shows how a square wave may be progressively
approximated by a finite series.

2.2 Properties of the Fourier Series

A full discussion of the properties of the Fourier series is beyond the scope of this book, and
the interested reader is referred to the references. Some of the more important properties are
summarized below.

(1) Existence of the Fourier Series For the series to exist, the integral of Eq. (17)
must converge. A set of three sufficient conditions, known as the Dirichelet con-
ditions, guarantee the existence of a Fourier series for a given periodic waveform
f(t). They are

• The function f(t) must be absolutely integrable over any period, that is

∫ t1+T

t1
|f(t)| dt < ∞ (25)

for any t1.
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• There must be at most a finite number of maxima and minima in the function
f(t) within any period.

• There must be at most a finite number of discontinuities in the function f(t)
within any period, and all such discontinuities must be finite in magnitude.

These requirements are satisfied by almost all waveforms found in engineering
practice. The Dirichelet conditions are a sufficient set of conditions to guarantee
the existence of a Fourier series representation. They are not necessary conditions,
and there are some functions that have a Fourier series representation without
satisfying all three conditions.

(2) Linearity of the Fourier Series Representation The Fourier analysis and syn-
thesis operations are linear. Consider two periodic functions g(t) and h(t) with
identical periods T , and their complex Fourier coefficients

Gn =
1
T

∫ T

0
g(t)e−jnω0tdt

Hn =
1
T

∫ T

0
h(t)e−jnω0tdt

and a third function defined as a weighted sum of g(t) and h(t)

f(t) = ag(t) + bh(t)

where a and b are constants. The linearity property, which may be shown by direct
substitution into the integral, states that the Fourier coefficients of f(t) are

Fn = aGn + bHn,

that is the Fourier series of a weighted sum of two time-domain functions is the
weighted sum of the individual series.

(3) Even and Odd Functions If f(t) exhibits symmetry about the t = 0 axis the
Fourier series representation may be simplified. If f(t) is an even function of time,
that is f(−t) = f(t), the complex Fourier series has coefficients Fn that are purely
real, with the result that the real series contains only cosine terms, so that Eq.
(11) simplifies to

f(t) =
1
2
a0 +

∞∑
n=1

an cos(nω0t). (26)

Similarly if f(t) is an odd function of time, that is f(−t) = −f(t), the coefficients
Fn are imaginary, and the one-sided series consists of only sine terms:

f(t) =
∞∑

n=1

bn sin(nω0t). (27)

Notice that an odd function requires that f(t) have a zero average value.

(4) The Fourier Series of a Time Shifted Function If the periodic function f(t)
has a Fourier series with complex coefficients Fn, the series representing a “time-
shifted” version g(t) = f(t + τ) has coefficients e−jnω0τFn. If

Fn =
1
T

∫ T

0
f(t)e−jnω0tdt

10



then

Gn =
1
T

∫ T

0
f(t + τ)e−jnω0tdt.

Changing the variable of integration ν = t + τ gives

Gn =
1
T

∫ τ+T

τ
f(ν)e−jnω0(ν−τ)dν

= ejnω0τ 1
T

∫ τ+T

τ
f(ν)e−jnω0νtdν

= ejnω0τFn.

If the nth spectral component is written in terms of its magnitude and phase

fn(t) = An sin(nω0t + φn)

then

fn(t + τ) = An sin (nω0(t + τ) + φn)
= An sin (nω0t + φn + nω0τ) .

The additional phase shift nω0τ , caused by the time shift τ , is directly proportional
to the frequency of the component nω0.

(5) Interpretation of the Zero Frequency Term The coefficients F0 in the com-
plex series and a0 in the real series are somewhat different from all of the other
terms for they correspond to a harmonic component with zero frequency. The
complex analysis equation shows that

F0 =
1
T

∫ t1+T

t1
f(t)dt

and the real analysis equation gives

1
2
a0 =

1
T

∫ t1+T

t1
f(t)dt

which are both simply the average value of the function over one complete period.
If a function f(t) is modified by adding a constant value to it, the only change in
its series representation is in the coefficient of the zero-frequency term, either F0

or a0.

Example

Find a Fourier series representation for the periodic “saw-tooth” waveform with period
T

f(t) =
2
T
t, |t| < T/2

shown in Fig. 5.
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Figure 5: A periodic saw-tooth waveform.

Solution: The complex Fourier coefficients are

Fn =
1
T

∫ T/2

−T/2

2
T
tejnω0tdt, (28)

and integrating by parts

Fn =
2j

nω0T 2

[
te−jnω0t

∣∣∣T/2

−T/2
+

∫ T/2

−T/2

1
jnω0

e−jnω0tdt

=
j

2nπ

[
e−jnπ + ejnπ

]
+ 0

=
j

nπ
cos(nπ)

=
j(−1)n

nπ
n �= 0, (29)

since cos(nπ) = (−1)n. The zero frequency coefficient must be evaluated separately:

F0 =
1
T

∫ T/2

−T/2

(
2
T
t

)
dt = 0. (30)

The Fourier series is:

f(t) =
∞∑

n=1

j(−1)n

nπ

(
ejnω0t − e−jnω0t

)

=
∞∑

n=1

2(−1)n+1

nπ
sin(nω0t)nonumber (31)

=
2
π

(
sin(ω0t) − 1

2
sin(2ω0t) +

1
3

sin(3ω0t) − 1
4

sin(4ω0t) + . . .

)
. (32)
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Example

Find a Fourier series representation of the function

f(t) =




1
4

+
2
T
t −5T/8 ≤ t < −T/8,

5
4

+
2
T
t −T/8 ≤ t < 3T/8

as shown in Fig. 6.

Solution: If f(t) is rewritten as:
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Figure 6: A modified saw-tooth function having a shift in amplitude and time origin

f(t) =




0 +
2
T

(t + T/8) −5T/8 ≤ t < −T/8,

1 +
2
T

(t + T/8) −T/8 ≤ t < 3T/8,

(33)

then
f(t) = f1(t + T/8) + f2(t + T/8), (34)

where f1(t) is the square wave function analysed in Example 2.1:

f(t) =

{
1 0 ≤ t < T/2,
0 T/2 ≤ t < T,

(35)

and f2(t) is the saw-tooth function of Example 2.2.

f(t) =
2
T
t, |t| < T/2. (36)

Therefore the function f(t) is a time shifted version of the sum of two functions for which
we already know the Fourier series. The Fourier series for f(t) is the sum (Linearity
Property) of phase shifted versions (Time Shifting Property) of the pair of Fourier series

13



derived in Examples 2.1 and 2.2. The time shift of T/8 seconds adds a phase shift of
nω0T/8 = nπ/4 radians to each component

f1(t + T/8) =
1
2

+
2
π

(
sin(ω0t + π/4) +

1
3

sin(3ω0t + 3π/4)

+
1
5

sin(5ω0t + 5π/4) +
1
7

sin(7ω0t + 7π/4) + . . .

)
(37)

f2(t + T/8) =
2
π

(
sin(ω0t + π/4) − 1

2
sin(2ω0t + π/2) +

1
3

sin(3ω0t + 3π/4)

− 1
4

sin(4ω0t + π) +
1
5

sin(5ω0t + 5π/4) − . . .

)
. (38)

The sum of these two series is

f(t) = f1(t) + f2(t)

=
1
2

+
2
π

(
2 sin(ω0t + π/4) − 1

2
sin(2ω0t + π/2) +

2
3

sin(3ω0t + 3π/4) (39)

− 1
4

sin(4ω0t + π) +
2
5

sin(5ω0t + 5π/4) − 1
6

sin(6ω0t + 3π/2) + . . .

)
.(40)

3 The Response of Linear Systems to Periodic Inputs

Consider a linear single-input, single-output system with a frequency response function H(jω). Let
the input u(t) be a periodic function with period T , and assume that all initial condition transient
components in the output have decayed to zero. Because the input is a periodic function it can be
written in terms of its complex or real Fourier series

u(t) =
∞∑

n=−∞
Une

jnω0t (41)

=
1
2
a0 +

∞∑
n=1

An sin(nω0t + φn) (42)

The nth real harmonic input component, un(t) = An sin(nω0t+φn), generates an output sinusoidal
component yn(t) with a magnitude and a phase that is determined by the system’s frequency
response function H(jω):

yn(t) = |H(jnω0)| An sin(nω0t + φn + � H(jnω0)). (43)

The principle of superposition states that the total output y(t) is the sum of all such component
outputs, or

y(t) =
∞∑

n=0

yn(t)

=
1
2
a0H(j0) +

∞∑
n=1

An |H(jnω0)| sin (nω0t + φn + � H(jnω0)) , (44)

which is itself a Fourier series with the same fundamental and harmonic frequencies as the input.
The output y(t) is therefore also a periodic function with the same period T as the input, but
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because the system frequency response function has modified the relative magnitudes and the
phases of the components, the waveform of the output y(t) differs in form and appearance from
the input u(t).

In the complex formulation the input waveform is decomposed into a set of complex exponentials
un(t) = Une

jnω0t. Each such component is modified by the system frequency response so that the
output component is

yn(t) = H(jnω0)Une
jnω0t (45)

and the complete output Fourier series is

y(t) =
∞∑

n=−∞
yn(t) =

∞∑
n=−∞

H(jnω0)Une
jnω0t. (46)

Example

The first order electrical network shown in Fig. 7 is excited with the saw-tooth function
discussed in Example 2.2. Find an expression for the series representing the output
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Figure 7: A first-order electrical system (a), driven by a saw-tooth input waveform (b).

Vo(t).

Solution: The electrical network has a transfer function

H(s) =
1

RCs + 1
, (47)

and therefore has a frequency response function

|H(jω)| =
1√

(ωRC)2 + 1
(48)

� H(jω) = tan−1(−ωRC). (49)

From Example 2.2, the input function u(t) may be represented by the Fourier series

u(t) =
∞∑

n=1

2(−1)n+1

nπ
sin(nω0t). (50)

15



At the output the series representation is

y(t) =
∞∑

n=1

|H(jnω0)| 2(−1)n+1

nπ
sin (nω0t + � H(jnω0))

=
∞∑

n=1

2(−1)n+1

nπ
√

(nω0RC)2 + 1
sin

(
nω0t + tan−1(−nω0RC)

)
. (51)

As an example consider the response if the period of the input is chosen to be T = πRC,
so that ω0 = 2/(RC), then

y(t) =
∞∑

n=1

2(−1)n+1

nπ
√

(2n)2 + 1
sin

(
2n
RC

t + tan−1(−2n)
)
.

Figure 8 shows the computed response, found by summing the first 100 terms in the
Fourier Series.
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Figure 8: Response of first-order electrical system to a saw-tooth input

Equations (46) and (45) show that the output component Fourier coefficients are products of the
input component coefficient and the frequency response evaluated at the frequency of the harmonic
component. No new frequency components are introduced into the output, but the form of the
output y(t) is modified by the redistribution of the input component amplitudes and phase angles by
the frequency response H(jnω0). If the system frequency response exhibits a low-pass characteristic
with a cut-off frequency within the spectrum of the input u(t), the high frequency components are
attenuated in the output, with a resultant general “rounding” of any discontinuities in the input.
Similarly a system with a high-pass characteristic emphasizes any high frequency component in
the input. A system having lightly damped complex conjugate pole pairs exhibits resonance in its
response at frequencies close to the undamped natural frequency of the pole pair. It is entirely
possible for a periodic function to excite this resonance through one of its harmonics even though
the fundamental frequency is well removed from the resonant frequency as is shown in Example 3.

Example

16



A cart, shown in Fig. 9a, with mass m = 1.0 kg is supported on low friction bearings that
exhibit a viscous drag B = 0.2 N-s/m, and is coupled through a spring with stiffness K
= 25 N/m to a velocity source with a magnitude of 10 m/s, but which switches direction
every π seconds as shown in Fig. 9b.

Vin(t) =

{
10 m/sec 0 ≤ t < π,
−10 m/sec π ≤ t < 2π

The task is to find the resulting velocity of the mass vm(t).
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Figure 9: A second-order system and its linear graph, together with its input waveform Vin(t).

Solution: The system has a transfer function

H(s) =
K/m

s2 + (B/m) s + K/m
(52)

=
25

s2 + 0.2s + 25
(53)

and an undamped natural frequency ωn = 5 rad/s and a damping ratio ζ = 0.02. It is
therefore lightly damped and has a strong resonance in the vicinity of 5 rad/s.

The input Ω(t) has a period of T = 2π s, and fundamental frequency of ω0 = 2π/T = 1
rad/s. The Fourier series for the input may be written directly from Example 2.1, and
contains only odd harmonics:

u(t) =
20
π

∞∑
n=1

1
2n− 1

sin ((2n− 1)ω0t) (54)

=
20
π

(
sin(ω0t) +

1
3

sin(3ω0t) +
1
5

sin(5ω0t) + . . .

)
. (55)

From Eq. (ii) the frequency response of the system is

H(jω) =
25

(25 − ω2) + j0.2ω
, (56)

which when evaluated at the harmonic frequencies of the input nω0 = n radians/sec. is

H(jnω0) =
25

(25 − n2) + j0.2n
. (57)
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The following table summarizes the the first five odd spectral components at the system
input and output. Fig. 10a shows the computed frequency response magnitude for the
system and the relative gains and phase shifts (rad) associated with the first five terms
in the series.

nω0 un |H(jnω0)| � H(jnω0) yn

1 6.366 sin(t) 1.041 −0.008 6.631 sin(t− 0.008)
3 2.122 sin(3t) 1.561 −0.038 3.313 sin(t− 0.038)
5 1.273 sin(5t) 25.00 −1.571 31.83 sin(t− 1.571)
7 0.909 sin(7t) 1.039 −3.083 0.945 sin(t− 3.083)
9 0.707 sin(9t) 0.446 −3.109 0.315 sin(t− 3.109)

The resonance in |H(jω)| at the undamped natural frequency ωn = 5 rad/s has a large
effect on the relative amplitude of the 5th harmonic in the output y(t). Figure 10b
shows the system input and output waveforms. The effect of the resonance can be
clearly seen, for the output appears to be almost sinusoidal at a frequency of 5 rad/s.
In fact the output is still a periodic waveform with a period of 2π seconds but the fifth
harmonic component dominates the response and makes it appear to be sinusoidal at
its own frequency.
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Figure 10: (a) The frequency response magnitude function of the mechanical system in Example
8, and (b) an input square wave function and its response.

4 Fourier Analysis of Transient Waveforms

Many waveforms found in practice are not periodic and therefore cannot be analyzed directly
using Fourier series methods. A large class of system excitation functions can be characterized as
aperiodic, or transient, in nature. These functions are limited in time, they occur only once, and
decay to zero as time becomes large [2,4,5].
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Figure 11: Periodic extension of a transient waveform

Consider a function f(t) of duration ∆ that exists only within a defined interval t1 < t ≤ t1 +∆,
and is identically zero outside of this interval. We begin by making a simple assumption; namely
that in observing the transient phenomenon f(t) within any finite interval that encompasses it,
we have observed a fraction of a single period of a periodic function with a very large period;
much larger than the observation interval. Although we do not know what the duration of this
hypothetical period is, it is assumed that f(t) will repeat itself at some time in the distant future,
but in the meantime it is assumed that this periodic function remains identically zero for the rest
of its period outside the observation interval.

The analysis thus conjectures a new function fp(t), known as a periodic extension of f(t), that
repeats every T seconds (T > ∆), but at our discretion we can let T become very large. Figure 11
shows the hypothetical periodic extension fp(t) created from the observed f(t). As observers of the
function fp(t) we need not be concerned with its pseudo-periodicity because we will never be given
the opportunity to experience it outside the first period, and furthermore we can assume that if
fp(t) is the input to a linear system, T is so large that the system response decays to zero before
the arrival of the second period. Therefore we assume that the response of the system to f(t) and
fp(t) is identical within our chosen observation interval. The important difference between the two
functions is that fp(t) is periodic, and therefore has a Fourier series description.

The development of Fourier analysis methods for transient phenomena is based on the limiting
behavior of the Fourier series describing fp(t) as the period T approaches infinity. Consider the
behavior of the Fourier series of a simple periodic function as its period T is varied; for example
an even periodic pulse function f(t) of fixed width ∆:

f(t) =

{
1 |t| < ∆/2
0 ∆/2 ≤ |t| ≤ T − ∆/2

(58)

——————- as shown in Figure 12. Assume that the pulse width ∆ remains constant as the
period T varies. The Fourier coefficients in complex form are

Fn =
1
T

∫ ∆/2

−∆/2
e−jnω0tdt

=
j

2nπ

[
e−jnω0∆/2 − ejnω0∆/2

]
=

1
nπ

sin (nπ∆/T )

=
∆
T

sin (nπ∆/T )
(nπ∆/T )

n �= 0 (59)
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Figure 12: A periodic rectangular pulse function of fixed duration ∆ but varying period T .

and

F0 =
1
T

∫ ∆/2

−∆/2
1dt =

∆
T

(60)

and the spectral lines are spaced along the frequency axis at intervals of ω0 = 2π/T rad/s. To
investigate the behavior of the spectrum as the period T is altered, we define a continuous function
of frequency

F (ω) =
sin(ω∆/2)

(ω∆/2)

and note that the Fourier coefficients may be computed directly from F (ω)

Fn =
∆
T

sin (ω∆/2)
(ω∆/2)

∣∣∣∣
ω=2πn/T

(61)

=
∆
T

F (ω)|ω=nω0
(62)

The function F (ω) depends only on the pulse width ∆, and is independent of the period T . As T
is changed, apart from the amplitude scaling factor ∆/T , the frequency dependence of the Fourier
coefficients is defined by F (ω); the relative strength of the nth complex harmonic component, at
a frequency nω0, is defined by F (nω0). The function F (ω) is therefore an envelope function that
depends only on f(t) and not on the length of the assumed period. Figure 13 shows examples
of the line spectra for the periodic pulse train as the period T is changed. The following general
observations on the behavior of the Fourier coefficients as T varies can be made:

(1) As the repetition period T increases, the fundamental frequency ω0 decreases, and
the spacing between adjacent lines in the spectrum decreases.

(2) As the repetition period T increases, the scaling factor ∆/T decreases, causing the
magnitude of all of the spectral lines to be diminished. In the limit as T approaches
infinity, the amplitude of the individual lines becomes infinitesimal.

(3) The “shape” of the spectrum is defined by the function F (ω) and is independent
of T .

Assume that we have an aperiodic function f(t) that is non-zero only for a defined time interval
∆, and without loss of generality assume that the interval is centered around the time origin (t = 0).
Then assume a periodic extension fp(t) of f(t) with period T that fully encompasses the interval
∆. The Fourier series description of fp(t) is contained in the analysis and synthesis equations

Fn =
1
T

∫ T/2

−T/2
fp(t)e−jnω0tdt (63)
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Figure 13: Line spectra of periodic extensions of an even rectangular pulse function.

fp(t) =
∞∑

n=−∞
Fne

jnω0t. (64)

These two equations may be combined by substituting for Fn in the synthesis equation,

fp(t) =
∞∑

n=−∞

{
ω0

2π

∫ T/2

−T/2
fp(t)e−jnω0tdt

}
ejnω0t (65)

where the substitution ω0/2π = 1/T has also been made.
The period T is now allowed to become arbitrarily large, with the result that the fundamental

frequency ω0 becomes very small and we write ω0 = δω. We define f(t) as the limiting case of fp(t)
as T approaches infinity, that is

f(t) = lim
T→∞

fp(t)

= lim
T→∞

∞∑
n=−∞

1
2π

{∫ T/2

−T/2
fp(t)e−jnδωtdt

}
ejnδωtδω

=
∫ ∞

−∞
1

2π

{∫ −∞

−∞
f(t)e−jωtdt

}
ejωtdω (66)

where in the limit the summation has been replaced by an integral. If the function inside the
braces is defined to be F (jω), Equation 66 may be expanded into a pair of equations, known as
the Fourier transform pair:

F (jω) =
∫ ∞

−∞
f(t)e−jωtdt (67)

f(t) =
1

2π

∫ ∞

−∞
F (jω)ejωtdω (68)
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which are the equations we seek.
Equation 67 is known as the forward Fourier transform, and is analogous to the analysis equation

of the Fourier series representation. It expresses the time-domain function f(t) as a function of
frequency, but unlike the Fourier series representation it is a continuous function of frequency.
Whereas the Fourier series coefficients have units of amplitude, for example volts or Newtons, the
function F (jω) has units of amplitude density, that is the total “amplitude” contained within a
small increment of frequency is F (jω)δω/2π.

Equation 68 defines the inverse Fourier transform. It allows the computation of the time-domain
function from the frequency domain representation F (jω), and is therefore analogous to the Fourier
series synthesis equation. Each of the two functions f(t) or F (jω) is a complete description of the
function and Equations 67 and 68 allow the transformation between the domains.

We adopt the convention of using lower-case letters to designate time-domain functions, and the
same upper-case letter to designate the frequency-domain function. We also adopt the nomenclature

f(t) F.T.⇐⇒ F (jω)

as denoting the bidirectional Fourier transform relationship between the time and frequency-domain
representations, and we also frequently write

F (jω) = F{f(t)}
f(t) = F−1{F (jω)}

as denoting the operation of taking the forward F{}, and inverse F−1{} Fourier transforms respec-
tively.

4.1 Fourier Transform Examples

In this section we present five illustrative examples of Fourier transforms of common time domain
functions.

Example

Find the Fourier transform of the pulse function

f(t) =

{
a |t| < T/2
0 otherwise.

shown in Figure 14.

Solution: From the definition of the forward Fourier transform

F (jω) =
∫ ∞

−∞
f(t)e−jωtdt (69)

= a

∫ T/2

−T/2
e−jωtdt (70)

= a

[
j

ω
e−jωt

∣∣∣∣T/2

T/2
(71)

=
ja

ω

[
e−jωT/2 − ejωT/2

]
(72)

= aT
sin(ωT/2)

ωT/2
. (73)
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Figure 14: An even aperiodic pulse function and its Fourier transform

The Fourier transform of the rectangular pulse is a real function, of the form (sinx)/x
centered around the jω = 0 axis. Because the function is real, it is sufficient to plot
a single graph showing only |F (jω)| as in Figure 14. Notice that while F (jω) is a
generally decreasing function of ω it never becomes identically zero, indicating that the
rectangular pulse function contains frequency components at all frequencies.

The function (sinx)/x = 0 when the argument x = nπ for any integer n (n �= 0). The
main peak or “lobe” of the spectrum F (jω) is therefore contained within the frequency
band defined by the first two zero-crossings |ωT/2| < π or |ω| < 2π/T . Thus as the
pulse duration T is decreased, the spectral bandwidth of the pulse increases as shown in
Figure 15, indicating that short duration pulses have a relatively larger high frequency
content.
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Figure 15: Dependence of the bandwidth of a pulse on its duration
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Example

Find the Fourier transform of the Dirac delta function δ(t).

Solution: The delta impulse function, is an important theoretical function in system
dynamics, defined as

δ(t) =

{
0 t �= 0
undefined t = 0,

(74)

with the additional defining property that∫ ∞

−∞
δ(t)dt = 1.

The delta function exhibits a “sifting” property when included in an integrand:∫ ∞

−∞
δ(t− T )f(t)dt = f(T ). (75)

When substituted into the forward Fourier transform

F (jω) =
∫ ∞

−∞
δ(t)e−jωtdt

= 1 (76)

by the sifting property. The spectrum of the delta function is therefore constant over
all frequencies. It is this property that makes the impulse a very useful test input for
linear systems.

Example

Find the Fourier transform of a finite duration sinusoidal “tone-burst”

f(t) =

{
sinω0t |t| < T/2
0 otherwise.

shown in Fig. 16. shown in Figure 16.

Solution: The forward Fourier transform is

F (jω) =
∫ ∞

−∞
f(t)e−jωtdt (77)

=
∫ T/2

−T/2
sin(ω0t)e−jωtdt. (78)
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Figure 16: A sinusoidal tone-burst and its Fourier transform

The sinusoid is expanded using the Euler formula:

F (jω) =
1
j2

∫ T/2

−T/2

[
e−j(ω−ω0)t − e−j(ω+ω0)t

]
dt (79)

=
1

2(ω − ω0)

[
e−j(ω−ω0)t

∣∣∣T/2

−T/2
− 1

2(ω + ω0)

[
e−j(ω+ω0)t

∣∣∣T/2

−T/2
(80)

= −j
T

2

{
sin ((ω − ω0)T/2)

(ω − ω0)T/2
− sin ((ω + ω0)T/2)

(ω + ω0)T/2

}
(81)

which is a purely imaginary odd function that is the sum of a pair of shifted imaginary
(sinx)/x functions, centered on frequencies ±ω0, as shown in Fig. 16. The zero-crossings
of the main lobe of each function are at ω0±2π/T indicating again that as the duration
of a transient waveform is decreased its spectral width increases. In this case notice
that as the duration T is increased the spectrum becomes narrower, and in the limit as
T → ∞ it achieves zero width and becomes a simple line spectrum.

Example

Find the Fourier transform of the one-sided real exponential function

f(t) =

{
0 t < 0
e−at t ≥ 0.

( for a > 0) as shown in Figure 17.

Solution: From the definition of the forward Fourier transform

F (jω) =
∫ ∞

−∞
f(t)e−jωtdt (82)
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Figure 17: The one-sided real exponential function and its spectrum

=
∫ ∞

0
e−ate−jωtdt (83)

=
[ −1
a + jω

e−(a+jω)t

∣∣∣∣∞
0

(84)

=
1

a + jω
(85)

which is complex, and in terms of a magnitude and phase function is

|F (jω)| =
1√

a2 + ω2
(86)

� F (jω) = tan−1
(−ω

a

)
(87)

Example

Find the Fourier transform of a damped one-sided sinusoidal function

f(t) =

{
0 t < 0
e−σt sinω0t t ≥ 0.

(for σ > 0) as shown in Figure 18.
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Figure 18: A damped sinusoidal function and its spectrum

Solution: From the definition of the forward Fourier transform

F (jω) =
∫ ∞

−∞
f(t)e−jωtdt (88)

=
1
j2

∫ ∞

0
e−σt

(
ejω0t − e−jω0t

)
e−jωtdt (89)

=
1
j2

[
− 1
σ + j(ω0 − ω)

e−(σ+j(ω−ω0))t

∣∣∣∣∞
0

− (90)

1
j2

[
− 1
σ + j(ω0 + ω)

e−(σ+j(ω+ω0))t

∣∣∣∣∞
0

(91)

=
ω0

(σ + jω)2 + ω2
0

. (92)

The magnitude and phase of this complex quantity are

|F (jω)| =
ω0√

(σ2 + ω2
0 − ω2)2 + (2σω)2

(93)

� F (jω) = tan−1 −2σω
σ2 + ω2

0 − ω2
(94)

4.2 Properties of the Fourier Transform

A full description of the properties of the Fourier transform is beyond the scope and intent of
this book, and the interested reader is referred to the many texts devoted to the Fourier transform
[2,4,5]. The properties listed below are presented because of their importance in the study of system
dynamics:
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(1) Existence of the Fourier Transform A modified form of the three Dirichelet
conditions presented for the Fourier series guarantees the existence of the Fourier
transform. These are sufficient conditions, but are not strictly necessary. For the
Fourier transform the conditions are

• The function f(t) must be integrable in the absolute sense over all time, that
is ∫ ∞

−∞
|f(t)| dt < ∞.

• There must be at most a finite number of maxima and minima in the function
f(t). Notice that periodic functions are excluded by this and the previous
condition.

• There must be at most a finite number of discontinuities in the function f(t),
and all such discontinuities must be finite in magnitude.

(2) Linearity of the Fourier Transform Like the Fourier series, the Fourier trans-
form is a linear operation. If two functions of time g(t) and h(t) have Fourier
transforms G(jω) and H(jω), that is

g(t) F⇐⇒ G(jω)

h(t) F⇐⇒ H(jω)

and a third function f(t) = ag(t) + bh(t), where a and b are constants, then the
Fourier transform of f(t) is

F (jω) = aG(jω) + bH(jω). (95)

(3) Even and Odd Functions The Fourier transform of an even function of time is
a purely real function, the transform of an odd function is an imaginary function.
Recall that the Fourier transform shows conjugate symmetry, that is

F (jω) = F (−jω). (96)

or

� [F (jω)] = � [F (−jω)] (97)
� [F (jω)] = −� [F (−jω)] , (98)

therefore the Fourier transform of an even function is both real and even, while
the transform of an odd function is both imaginary and odd.

(4) Time Shifting Let f(t) be a waveform with a Fourier transform F (jω), that is

F{f(t)} = F (jω)

then the Fourier transform of f(t + τ), a time shifted version of f(t), is

F{f(t + τ)} = ejωτF (jω).

This result can be shown easily, since by definition

F{f(t + τ)} =
∫ ∞

−∞
f(t + τ)e−jωtdt.
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If the variable ν = t + τ is substituted in the integral,

F{f(t + τ)} =
∫ ∞

−∞
f(ν)e−jω(ν−τ)dν

= ejωτ
∫ ∞

−∞
f(ν)e−jωνdν

= ejωτF (jω). (99)

If F (jω) is expressed in polar form, having a magnitude and phase angle, this
relationship may be rewritten as

F{f(t + τ)} = |F (jω)| ej( � F (jω)+ωτ) (100)

which indicates that the Fourier transform of a time shifted waveform has the
same magnitude function as the original waveform, but has an additional phase-
shift term that is directly proportional to frequency.

(5) Waveform Energy We have asserted that the time domain representation f(t)
and the frequency domain representation F (jω) are both complete descriptions of
the function related through the Fourier transform

f(t) F⇐⇒ F (jω).

If we consider the function f(t) to be a system through or across-variable, the
instantaneous power that is dissipated in a D-type element with a value of unity
is equal to the square of its instantaneous value. For example, the power dissi-
pated when voltage v(t) is applied to an electrical resistance of 1 ohm is v2(t).
The power associated with a complex variable v(t) is |v(t)|2. The “energy” of an
aperiodic function in the time domain is defined as the integral of this hypothetical
instantaneous power over all time

E =
∫ ∞

−∞
|f(t)|2 dt (101)

Parseval’s theorem [3] asserts the equivalence of the total waveform energy in the
time and frequency domains by the relationship∫ ∞

−∞
|f(t)|2 dt =

1
2π

∫ ∞

−∞
|F (jω)|2 dω

=
1

2π

∫ ∞

−∞
F (jω)F (jω)dω. (102)

In other words, the quantity |F (jω)|2 is a measure of the energy of the function
per unit bandwidth. The energy ∆E contained between two frequencies ω1 and
ω2 is

∆E =
1

2π

∫ ω2

ω1

F (jω)F (jω)dω. (103)

Notice that this is a one-sided energy content and that because the Fourier trans-
form is a two-sided spectral representation, the total energy in a real function
includes contributions from both positive and negative frequencies. The function

Φ(jω) = |F (jω)|2
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is a very important quantity in experimental system dynamics and is known as
the energy density spectrum. It is a real function, with units of energy per unit
bandwidth, and shows how the energy of a waveform f(t) is distributed across the
spectrum.

(6) Relationship Between the Fourier Transform and the Fourier
Series of a Periodic Extension of an Aperiodic Function Let f(t) be a
function, with Fourier transform F (jω), that exists only in a defined interval |t| <
∆/2 centered on the time origin. Then if fp(t) is a periodic extension of f(t),
formed by repeating f(t) at intervals T > ∆, each period contains f(t). Then the
Fourier coefficients describing fp(t) are

cn =
1
T

∫ T/2

−T/2
fp(t)e−jnω0tdt

=
1
T

∫ ∞

−∞
f(t)e−jnω0tdt

=
1
T
F (jnω0). (104)

The Fourier coefficients of a periodic function are scaled samples of the Fourier
transform of the function contained within a single period. The transform thus
forms the envelope function for the definition of the Fourier series as discussed in
Section 2.

(7) The Fourier Transform of the Derivative of a Function If a function f(t)
has a Fourier transform F (jω) then

F
{
df

dt

}
= jωF (jω),

which is easily shown using integration by parts:

F
{
df

dt

}
=

∫ ∞

−∞
df

dt
e−jωtdt

=
∣∣∣f(t)e−jωt

∣∣∣∞−∞ −
∫ ∞

−∞
f(t)(−jω)e−jωtdt

= 0 + jωF (jω)

since by definition f(t) = 0 at t = ±∞.
This result can be applied repetitively to show that the Fourier transform of the
nth derivative of f(t) is

F
{
dnf

dtn

}
= (jω)nF (jω) (105)

5 Fourier Transform Based Properties of Linear Systems

5.1 Response of Linear Systems to Aperiodic Inputs

The Fourier transform provides an alternative method for computing the response of a linear system
to a transient input. Assume that a linear system with frequency response H(jω) is initially at
rest, and is subsequently subjected to an aperiodic input u(t) having a Fourier Transform U(jω).
The task is to compute the response y(t).
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Assume that the input function u(t), is a periodic function up(t) with an arbitrarily large period
T , and that since up(t) is periodic it can be described by a set of complex Fourier coefficients {Un}.
The output yp(t) is periodic with period T and is described by its own set of Fourier coefficients
{Yn}. In Section 3.2 it was shown that the output coefficients are

Yn = H(jnω0)Un, (106)

and that the Fourier synthesis equation for the output is

yp(t) =
∞∑

n=−∞
Yne

jnω0t (107)

=
∞∑

n=−∞
H(jnω0)Une

jnω0t (108)

=
∞∑

n=−∞
H(jnω0)

{
ω0

2π

∫ T/2

−T/2
up(t)e−jnω0tdt

}
ejnω0t (109)

As in the development of the Fourier transform, we let T → ∞ so that up(t) → u(t), and in the
limit write the summation as an integral

y(t) = lim
T→∞

yp(t)

=
∫ ∞

−∞
H(jω)

{
1

2π

∫ ∞

−∞
u(t)e−jωtdt

}
ejωtdω

=
1

2π

∫ ∞

−∞
H(jω)U(jω)ejωtdω. (110)

This equation expresses the system output y(t) in the form of the inverse Fourier transform of the
product H(jω)U(jω) or

y(t) = F−1 {H(jω)U(jω)} . (111)

We can therefore write
Y (jω) = H(jω)U(jω), (112)

which is the fundamental frequency-domain input/output relationship for a linear system. The
output spectrum is therefore the product of the input spectrum and the system frequency response
function:

Given a relaxed linear system with a frequency response H(jω) and an input that
possesses a Fourier transform, the response may be found by the following three steps:

(1) Compute the Fourier transform of the input

U(jω) = F {u(t)} .

(2) Form the output spectrum as the product

Y (jω) = H(jω)U(jω),

(3) Compute the inverse Fourier transform

y(t) = F−1 {Y (jω)} .
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Figure 19: Frequency domain computation of system response.

Figure 19 illustrates the steps involved in computing the system response using the Fourier trans-
form method.

Example

Use the Fourier transform method to find the response of a linear first-order system
with a transfer function

H(s) =
1

τs + 1
to a one-sided decaying exponential input

u(t) =

{
0 t < 0
e−at t ≥ 0.

where a > 0.

Solution: The frequency response of the system is

H(jω) =
1/τ

τ + jω
(113)

and from Example 4.1 the Fourier transform of a decaying exponential input is

U(jω) = F {u(t)}
= F {

e−aτ}
=

1
a + jω

. (114)

The output spectrum is the product of the transfer function and the frequency response

Y (jω) = H(jω)U(jω)

=
1/τ

1/τ + jω
.

1
a + jω

. (115)

In order to compute the time domain response through the inverse transform, it is
convenient to expand Y (jω) in terms of its partial fractions

Y (jω) =
1

aτ − 1

[
1

1/τ + jω
− 1

a + jω

]
(116)
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provided a �= 1/τ , and using the linearity property of the inverse transform

y(t) = F−1 {Y (jω)}
=

1
aτ − 1

[
F−1

{
1

1/τ + jω

}
−F−1

{
1

a + jω

}]
(117)

Using the results of Example 4.1 once more

e−aτ F⇐⇒ 1
a + jω

, (118)

the desired solution is
y(t) =

1
aτ − 1

[
e−t/τ − e−at

]
(119)

These input/output relationships are summarized in Figure 20.
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Figure 20: First-order system response to an exponential input

Before the 1960’s frequency domain analysis methods were of theoretical interest, but the dif-
ficulty of numerically computing Fourier transforms limited their applicability to experimental
studies. The problem lay in the fact that numerical computation of the transform of n samples
of data required n2 complex multiplications, which took an inordinate amount of time on existing
digital computers. In the 1960’s a set of computational algorithms, known as the Fast Fourier
transform (FFT) methods, that required only n log2 n multiplications for computing the Fourier
transform of experimental data were developed. The computational savings are very great, for
example in order to compute the transform of 1024 data points, the FFT algorithm is faster by
a factor of more than 500. These computational procedures revolutionized spectral analysis and
frequency domain analysis of system behavior, and opened up many new analysis methods that
had previously been impractical. FFT based system analysis is now routinely done in both software
and in dedicated digital signal-processing (DSP) electronic hardware. These techniques are based
on a “discrete-time” version of the continuous Fourier transforms described above, and have some
minor differences in definition and interpretation.
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5.2 The Frequency Response Defined Directly from the Fourier Transform

The system frequency response function H(jω) may be defined directly using the transform property
of derivatives. Consider a linear system described by the single input/output differential equation

an
dny

dtn
+ an−1

dn−1y

dtn−1
+ . . . + a1

dy

dt
+ a0y =

bm
dmu

dtm
+ bm−1

dm−1u

dtm−1
+ . . . + b1

du

dt
+ b0u (120)

and assume that the Fourier transforms of both the input u(t) and the output y(t) exist. Then the
Fourier transform of both sides of the differential equation may be found by using the derivative
property (Property (7) of Section 4.2):

F
{
dnf

dtn

}
= (jω)nF (jω)

to give {
an(jω)n + an−1(jω)n−1 + . . . + a1(jω) + a0

}
Y (jω) ={

bm(jω)m + bm−1(jω)m−1 + . . . + b1(jω) + b0
}
U(jω), (121)

which has reduced the original differential equation to an algebraic equation in jω. This equation
may be rewritten explicitly in terms of Y (jω) in terms of the frequency response H(jω)

Y (jω) =
bm(jω)m + bm−1(jω)m−1 + . . . + b1(jω) + b0
an(jω)n + an−1(jω)n−1 + . . . + a1(jω) + a0

U(jω) (122)

= H(jω)U(jω), (123)

showing again the generalized multiplicative frequency domain relationship between input and
output.

5.3 Relationship between the Frequency Response and the Impulse Response

In Example 4.1 it is shown that the Dirac delta function δ(t) has a unique property; its Fourier
transform is unity for all frequencies

F {δ(t)} = 1,

The impulse response of a system h(t) is defined to be the response to an input u(t) = δ(t), the
output spectrum is then Yδ(jω) = F {h(t)},

Y (jω) = F {δ(t)}H(jω)
= H(jω). (124)

or
h(t) = F−1 {H(jω)} . (125)

In other words, the system impulse response h(t) and its frequency response H(jω) are a Fourier
transform pair:

h(t) F⇐⇒ H(jω). (126)

In the same sense that H(jω) completely characterizes a linear system in the frequency response,
the impulse response provides a complete system characterization in the time domain.
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Example

An unknown electrical circuit is driven by a pulse generator, and its output is connected
to a recorder for subsequent analysis, as shown in Figure 21.
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Figure 21: Setup for estimating the frequency response of an electrical circuit

The pulse generator produces pulses of 1 msec. duration and an amplitude of 10 volts.
When the circuit is excited by a single pulse the output is found to be very closely
approximated by a damped sinusoidal oscillation of the form

y(t) = 0.02e−tsin(10t).

Estimate the frequency response of the system.

Solution: The input u(t) is a short rectangular pulse, much shorter in duration than the
observed duration of the system response. The impulse function δ(t) is the limiting case
of a unit area rectangular pulse, as its duration approached zero. For this example we
assume that the duration of the pulse is short enough to approximate a delta function,
and because this pulse has an area of 10 × 0.001 = 0.01 v-s, we assume

u(t) = 0.01δ(t) (127)

and therefore assume that the observed response is a scaled version of the system impulse
response,

y(t) = 0.01h(t), (128)

or

h(t) = 100y(t)
= 2e−5tsin(12t).

The frequency response is

H(jω) = F {h(t)}
= 2F

{
e−5tsin(12t)

}
. (129)
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In Example 4.1 it is shown that

F
{
e−σt sinω0t

}
=

ω0

(σ + jω)2 + ω2
0

,

and substituting ω0 = 12, σ = 5 gives

H(jω) =
24

(jω)2 + j20ω + 169
(130)

We therefore make the substitution s = jω and conclude that our unknown electrical
network is a second-order system with a transfer function

H(s) =
24

s2 + 20s + 169
, (131)

which has an undamped natural frequency ωn = 13 radians/sec. and a damping ratio
ζ = 10/13. The input/output differential equation is

d2y

dt2
+ 20

dy

dt
+ 169y = 24u(t). (132)

5.4 The Convolution Property

A system with an impulse response h(t), driven by an input u(t), responds with an output y(t)
given by the convolution integral

y(t) = h(t) / u(t)

=
∫ ∞

−∞
u(τ)h(t− τ)dτ (133)

or alternatively by changing the variable of integration

y(t) =
∫ ∞

−∞
u(t− τ)h(τ)dτ. (134)

In the frequency domain the input/output relationship for a linear system is multiplicative, that is
Y (jω) = U(jω)H(jω). Because by definition

y(t) F⇐⇒ Y (jω),

we are lead to the conclusion that

h(t) / u(t) F⇐⇒ H(jω)U(jω). (135)

The computationally intensive operation of computing the convolution integral has been replaced
by the operation of multiplication. This result, known as the convolution property of the Fourier
transform, can be shown to be true for the product of any two spectra, for example F (jω) and
G(jω)

F (jω)G(jω) =
∫ ∞

−∞
f(ν)e−jωνdν.

∫ ∞

−∞
g(τ)e−jωτdτ

=
∫ ∞

−∞

∫ ∞

−∞
f(ν)g(τ)e−jω(ν+τ)dτdν,
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Figure 22: Frequency Response of Cascaded and Parallel Linear Systems

and with the substitution t = ν + τ

H(jω)U(jω) =
∫ ∞

−∞

{∫ ∞

−∞
f(t− τ)g(τ)dτ

}
e−jωtdt

=
∫ ∞

−∞
(f(t) / g(t)) e−jωtdt

= F {f(t) / g(t)} . (136)

A dual property holds: if any two functions, f(t) and g(t), are multiplied together in the time
domain, then the Fourier transform of their product is a convolution of their spectra. The dual
convolution/multiplication properties are

f(t) / g(t) F⇐⇒ F (jω)G(jω) (137)

f(t)g(t) F⇐⇒ 1
2π

F (jω) / G(jω). (138)

5.5 The Frequency Response of Interconnected Systems

If two linear systems H1(jω) and H2(jω) are connected in cascade, or series, as shown if Fig. 22 so
that the output variable of the first is the input to the second, then provided the interconnection
does not affect y1(t), overall frequency response is

Y2(jω) = H2(jω)Y1(jω)
= H2(jω) {H1(jω)U(jω)}
= {H2(jω)H1(jω)}U(jω)

(139)

The overall frequency response is therefore the product of the two cascaded frequency responses

H(jω) = H1(jω)H2(jω). (140)

Similarly, if two linear systems are connected in parallel so that their outputs are summed
together, then

Y (jω) = H1(jω)U(jω) + H2(jω)U(jω)
= {H1(jω) + H2(jω)}U(jω), (141)
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Figure 23: Modification of a function by a multiplicative weighting function

so that the overall frequency response is the sum of the two component frequency responses

H(jω) = H1(jω) + H2(jω). (142)

6 The Laplace Transform

While the Fourier transform is an important theoretical and practical tool for the analysis and
design of linear systems, there are classes of waveforms for which the integral defining the transform
does not converge. Two important functions that do not have Fourier transforms are the unit step
function

us(t) =

{
0 t ≤ 0,
1 t > 0,

and the ramp function

r(t) =

{
0 t ≤ 0,
t t > 0.

Neither of these functions is integrable in the absolute sense, for example∫ ∞

−∞
|us(t)| dt = ∞,

and the forward Fourier transform

F (jω) =
∫ ∞

−∞
f(t)e−jωtdt

does not converge for either function. The Laplace transform is a generalized form of the Fourier
transform that exists for a much broader range of functions.

The development of the Fourier transform, described in Section 3, requires that the time function
f(t) is limited in duration and can be described by a Fourier series of a periodic extension of the
waveform. Neither the step nor the ramp function satisfies this condition; they are representative
of a broad range of functions that are unlimited in extent. The Laplace transform of f(t) is
the Fourier transform of a modified function, formed by multiplying f(t) by a weighting function
w(t) that forces the product f(t)w(t) to zero as time t becomes large. In particular, the Laplace
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transform uses an exponential weighting function

w(t) = e−σt (143)

where σ is real. Figure 23 shows how this function will force the product w(t)f(t) to zero for large
values of t. Then for a given value of σ, provided∫ ∞

−∞
|w(t)f(t)| dt < ∞,

the Fourier transform of f(t)e−σt:

F (jω|σ) = F
{
f(t)e−σt

}
=

∫ ∞

−∞
(f(t)e−σt)e−jωtdt (144)

will exist. The modified transform is not a function of angular frequency ω alone, but also of the
value of the weighting constant σ. The Laplace transform combines both ω and σ into a single
complex variable s

s = σ + jω (145)

and defines the two-sided transform as a function of the complex variable s

F (s) =
∫ ∞

−∞
(f(t)e−σt)e−jωtdt

=
∫ ∞

−∞
f(t)e−stdt (146)

For a given f(t) the integral may converge for some values of σ but not others. The region of
convergence (ROC) of the integral in the complex s-plane is an important qualification that should
be specified for each transform F (s). Notice that when σ = 0, so that w(t) = 1, the Laplace
transform reverts to the Fourier transform. Thus, if f(t) has a Fourier transform

F (jω) = F (s) |s=jω . (147)

Stated another way, a function f(t) has a Fourier transform if the region of convergence of the
Laplace transform in the s-plane includes the imaginary axis.

In engineering analyses it is usual to restrict the application of the Laplace transform to those
functions for which f(t) = 0 for t < 0. Under this restriction the integrand is zero for all negative
time and the limits on the integral may be changed

F (s) =
∫ ∞

0
f(t)e−stdt, (148)

which is commonly known as the one-sided Laplace transform. In this book we discuss only the
properties and use of this one-sided transform, and refer to it as the Laplace transform. It should
be kept clearly in mind that the requirement

f(t) = 0 for t < 0

must be met in order to satisfy the definition of the Laplace transform.
The inverse Laplace transform may be defined from the Fourier transform. Since

F (s) = F (σ + jω) = F
{
f(t)e−σt

}
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the inverse Fourier transform of F (s) is

f(t)e−σt = F {F (s)} =
1

2π

∫ ∞

−∞
F (σ + jω)ejωtdω. (149)

If each side of the equation is multiplied by eσt

f(t) =
1

2π

∫ ∞

−∞
F (s)estdω. (150)

The variable of integration may be changed from ω to s = σ + jω, so that ds = jdω, and with the
corresponding change in the limits the inverse Laplace transform is

f(t) =
1

2πj

∫ σ+j∞

σ−j∞
F (s)estds (151)

The evaluation of this integral requires integration along a path parallel to the jω axis in the
complex s plane. As will be shown below, it is rarely necessary to compute the inverse Laplace
transform in practice.

The one-sided Laplace transform pair is defined as

F (s) =
∫ ∞

0
f(t)e−stdt (152)

f(t) =
1

2πj

∫ σ+j∞

σ−j∞
F (s)estds. (153)

The equations are a transform pair in the sense that it is possible to move uniquely between the
two representations. The Laplace transform retains many of the properties of the Fourier transform
and is widely used throughout engineering systems analysis.

We adopt a nomenclature similar to that used for the Fourier transform to indicate Laplace
transform relationships between variables. Time domain functions are designated by a lower-case
letter, such as y(t), and the frequency domain function use the same upper-case letter, Y (s). For
one-sided waveforms we differentiation between the Laplace and Fourier transforms by the argument
F (s) or F (jω) on the basis that

F (jω) = F (s)|s=jω

A bidirectional Laplace transform relationship between a pair of variables is indicated by the
nomenclature

f(t) L⇐⇒ F (s),

and the operations of the forward and inverse Laplace transforms are written:

L{f(t)} = F (s)
L−1 {F (s)} = f(t).

6.1 Laplace Transform Examples

Example

Find the Laplace transform of the unit step function

us(t) =

{
0 t ≤ 0
1 t > 0.
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Solution: From the definition of the Laplace transform

F (s) =
∫ ∞

0
f(t)e−stdt (154)

=
∫ ∞

0
e−stdt

=
[
−1
s
e−st

∣∣∣∣∞
0

=
1
s
, (155)

provided σ > 0. Notice that the integral does not converge for σ = 0, and therefore
that the unit step does not have a Fourier transform.

Example

Find the Laplace transform of the one-sided real exponential function

f(t) =

{
0 t ≤ 0
eat t > 0.

Solution: In Example 4.1 the Fourier transform of a real exponential waveform with
a negative exponent was found. In this example we let the exponent be positive or
negative.

F (s) =
∫ ∞

0
f(t)e−stdt (156)

=
∫ ∞

0
e−(s−a)tdt

=
[
− 1
s− a

e−(s−a)t

∣∣∣∣∞
0

=
1

s− a
(157)

The integral will converge only if σ > a and therefore the region of convergence is all
of the s-plane to the right of σ = a.

Example

Find the Laplace transform of the one-sided ramp function

f(t) =

{
0 t < 0
t t ≥ 0.
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Solution: The ramp function does not posses a Fourier transform, but its Laplace
transform is

F (s) =
∫ ∞

0
te−stdt, (158)

and integrating by parts

F (s) =
[
−1
s
te−st

∣∣∣∣∞
0

+
1
s

∫ ∞

0
e−stdt (159)

= 0 +
1
s2

[
e−st

∣∣∣∞
0

=
1
s2

(160)

The region of convergence is all of the s-plane to the right of σ = 0, that is the right
half-plane.

Example

Find the Laplace transform of the Dirac delta function δ(t). In Example 4.1 it was
shown that δ(t) had the important property that F {δ(t)} = 1.

Solution: When substituted into the Laplace transform

∆(s) =
∫ ∞

0
δ(t)e−stdt (161)

= 1 (162)

by the sifting property of the impulse function. Thus δ(t) has a similar property in the
Fourier and Laplace domains; its transform is unity and it converges everywhere.

Example

Find the Laplace transform of a one-sided sinusoidal function

f(t) =

{
0 t ≤ 0.
sinω0t t > 0.

Solution: The Laplace transform is

F (s) =
∫ ∞

0
sin(ω0t)e−stdt, (163)
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and the sine may be expanded as a pair of complex exponentials using the Euler formula

F (s) =
1
j2

∫ ∞

0

[
e−(σ+j(ω−ω0))t − e−(σ+j(ω+ω0))t

]
dt (164)

=
[
− 1
σ + j(ω − ω0)

e−(σ+j(ω−ω0))t

∣∣∣∣∞
0

−
[
− 1
σ + j(ω + ω0)

e−(σ+j(ω+ω0))t

∣∣∣∣∞
0

=
ω0

(σ + jω)2 + ω2
0

=
ω0

s2 + ω2
0

(165)

for all σ > 0.

These and other common Laplace transform pairs are summarized in Table 2.

6.2 Properties of the Laplace Transform

(1) Existence of the Laplace Transform The Laplace transform exists for a much
broader range of functions than the Fourier transform. Provided the function f(t)
has a finite number of discontinuities in the interval 0 < t < ∞, and all such
discontinuities are finite in magnitude, the transform converges for σ > α provided
there can be found a pair of numbers M , and α, such that

|f(t)| ≤ Meαt

for all t ≥ 0. As with the Dirichelet conditions for the Fourier transform, this is a
sufficient condition to guarantee the existence of the integral but it is not strictly
necessary.
While there are functions that do not satisfy this condition, for example et2 > Meαt

for any M and α at sufficiently large values of t, the Laplace transform does exist
for most functions of interest in the field of system dynamics.

(2) Linearity of the Laplace Transform Like the Fourier transform, the Laplace
transform is a linear operation. If two functions of time g(t) and h(t) have Laplace
transforms G(s) and H(s), that is

g(t) L⇐⇒ G(s)

h(t) L⇐⇒ H(s)

then
L{ag(t) + bh(t)} = aL{g(t)} + bL{h(t)} . (166)

which is easily shown by substitution into the transform integral.

(3) Time Shifting If F (s) = Lf(t) then

L{f(t + τ)} = esτF (s). (167)

This property follows directly from the definition of the transform

L{f(t + τ)} =
∫ ∞

0
f(t + τ)e−stdt
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f(t) for t ≥ 0 F (s)

δ(t) 1

us(t)
1
s

t
1
s2

tk
k!

sk+1

e−at 1
s + a

tke−at k!
(s + a)k+1

1 − e−at a

s(s + a)

1 +
b

a− b
e−at − a

a− b
e−bt ab

a(s + a)(s + b)

cosωt
s

s2 + ω2

sinωt
ω

s2 + ω2

e−at (ω cosωt− a sinωt)
ωs

(s + a)2 + ω2

Table 2: Table of Laplace transforms F (s) of some common one-sided functions of time f(t).
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and if the variable of integration is changed to ν = t + τ ,

L{f(t + τ)} =
∫ ∞

0
f(ν)e−s(ν−τ)dν

= esτ
∫ ∞

0
f(ν)e−sνdν

= esτF (s). (168)

(4) The Laplace Transform of the Derivative of a Function If a function f(t)
has a Laplace transform F (s), the Laplace transform of the derivative of f(t) is

L
{
df

dt

}
= sF (s) − f(0). (169)

Using integration by parts

L
{
df

dt

}
=

∫ ∞

0

df

dt
e−stdt

=
∣∣∣f(t)e−st

∣∣∣∞
0

+
∫ ∞

0
sf(t)e−stdt

= sF (s) − f(0).

This procedure may be repeated to find the Laplace transform of higher order
derivatives, for example the Laplace transform of the second derivative is

L
{
d2f

dt2

}
= s [sL{f(t)} − f(0)] −df

dt

∣∣∣∣
t=0

= s2F (s) − sf(0) − df

dt

∣∣∣∣
t=0

(170)

which may be generalized to

L
{
dnf

dtn

}
= snF (s) −

n∑
i=1

sn−i

(
di−1f

dti−1

∣∣∣∣∣
t=0

)
(171)

for the n derivative of f(t).
(5) The Laplace Transform of the Integral of a Function If f(t) is a one-sided

function of time with a Laplace transform F (s), the Laplace transform of the
integral of f(t) is

L
{∫ t

0
f(τ)dτ

}
=

1
s
F (s). (172)

If a new function g(t), which is the integral of f(t), is defined

g(t) =
∫ t

0
f(τ)dτ

then the derivative property shows that

L{f(t)} = sG(s) − g(0),

and since g(0) = 0, we obtain the desired result.

G(s) =
1
s
F (s)
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(6) The Laplace Transform of a Periodic Function The Laplace transform of a
one-sided periodic continuous function with period T (> 0) is

F (s) =
1

1 − e−sT

∫ T

0
f(t)e−stdt. (173)

Define a new function f1(t) that is defined over one period of the waveform

f1(t) =

{
f(t) 0 < t ≤ T,
0 otherwise

so that f(t) may be written

f(t) = f1(t) + f1(t + T ) + f1(t + 2T ) + f1(t + 3T ) + . . .

then using the time-shifting property above

F (s) = F1(s) + e−sTF1(s) + e−s2TF1(s) + e−s3TF1(s) + . . .

=
(
1 + e−sT + e−s2T + e−s3T + . . .

)
F1(s)

The quantity in parentheses is a geometric series whose sum is 1/(1 − e−sT ) with
the desired result

F (s) =
1

1 − e−sT
F1(s)

=
1

1 − e−sT

∫ T

0
f(t)e−stdt

(7) The Final Value Theorem The final value theorem relates the steady-state
behavior of a time domain function f(t) to its Laplace transform. It applies only if
f(t) does in fact settle down to a steady (constant) value as t → ∞. For example
a sinusoidal function sinωt does not have a steady-state value, and the final value
theorem does not apply.
If f(t) and its first derivative both have Laplace transforms, and if limt→∞ f(t)
exists then

lim
t→∞ f(t) = lim

s→0
sF (s) (174)

To prove the theorem, consider the limit as s approaches zero in the Laplace
transform of the derivative

lim
s→0

∫ ∞

0

[
d

dt
f(t)

]
e−stdt = lim

s→0
[sF (s) − f(0)]

from the derivative property above. Since lims→0 e
−st = 1∫ ∞

0

[
d

dt
f(t)

]
dt = f(t) |∞0

= f(∞) − f(0)
= lim

s→0
sF (s) − f(0),

from which we conclude
f(∞) = lim

s→0
sF (s).
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6.3 Computation of the Inverse Laplace Transform

Evaluation of the inverse Laplace transform integral, defined in Eq. (153), involves contour inte-
gration in the region of convergence in the complex plane, along a path parallel to the imaginary
axis. In practice this integral is rarely solved, and the inverse transform is found by recourse to
tables of transform pairs, such as Table 2. In systems analysis Laplace transforms usually appear
as rational functions of the complex variable s, that is

F (s) =
N(s)
D(s)

where the degree of the numerator polynomial N(s) is at most equal to the degree of the denom-
inator polynomial D(s). The method of partial fractions, described in Appendix C, may be used
to express F(s) as a sum of much simpler rational functions, all of which have well known inverse
transforms. For example, suppose that F (s) may be written in factored form

F (s) =
K(s + b1)(s + b2) . . . (s + bm)
(s + a1)(s + a2) . . . (s + an)

where n ≥ m, and a1, a2, . . . , an and b1, b2, . . . , bm are all either real or appear in complex conjugate
pairs, if all of the ai are distinct, then the transform may be written as a sum of first-order terms

F (s) =
A1

s + a1
+

A2

s + a2
+ . . . +

An

s + an

where the partial fraction coefficients A1, A2 . . . An are found from the residues

Ai =
[
(s + ai)

N(s)
D(s)

]
s=−ai

as described in Appendix C. From the table of transforms in Table 2 each first-order term corre-
sponds to an exponential time function,

e−at L⇐⇒ 1
s + a

,

so that the complete inverse transform is

f(t) = A1e
−a1t + A2e

−a2t + . . . + Ane
−ant.

Example

Find the inverse Laplace transform of

F (s) =
6s + 14

s2 + 4s + 3
.

Solution: The partial fraction expansion is

F (s) =
6s + 14

(s + 3)(s + 1)

=
A1

s + 3
+

A2

s + 1

47



where A1, and A2 are found from the residues

A1 = [(s + 3)F (s)]s=−3

=
[

6s + 14
s + 1

]
s=−3

= 2,

and similarly A2 = 4. Then from Table 2,

f(t) = L−1 {F (s)}
= L−1

{
2

s + 3

}
+ L−1

{
4

s + 1

}
= 2e−3t + 4e−t for t > 0.

As described in Appendix C, if the denominator polynomial D(s) contains repeated factors, the
partial fraction expansion of F (s) contains additional terms involving higher powers of the factor.

Example

Find the inverse Laplace transform of

F (s) =
5s2 + 3s + 1

s3 + s2
=

5s2 + 3s + 1
s2(s + 1)

Solution In this case there is a repeated factor s2 in the denominator, and the partial
fraction expansion contains an additional term:

F (s) =
A1

s
+

A2

s2
+

A3

s + 1

=
2
s

+
1
s2

+
3

s + 1
. (175)

The inverse transform of the three components can be found in Table 2, and the total
solution is therefore

f(t) = L−1 {F (s)}
= 2L−1

{
1
s

}
+ L−1

{
1
s2

}
+ 3L−1

{
1

s + 1

}
= 2 + t + 3e−t for t > 0.
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7 Laplace Transform Applications in Linear Systems

7.1 Solution of Linear Differential Equations

The use of the derivative property of the Laplace transform generates a direct algebraic solution
method for determining the response of a system described by a linear input/output differential
equation. Consider an nth order linear system, completely relaxed at time t = 0, and described by

an
dny

dtn
+ an−1

dn−1y

dtn−1
+ . . . + a1

dy

dt
+ a0y =

bm
dmu

dtm
+ bm−1

dm−1u

dtm−1
+ . . . + b1

du

dt
+ b0u. (176)

In addition assume that the input function u(t), and all of its derivatives are zero at time t = 0,
and that any discontinuities occur at time t = 0+. Under these conditions the Laplace transforms
of the derivatives of both the input and output simplify to

L
{
dnf

dtn

}
= snF (s),

so that if the Laplace transform of both sides is taken{
ans

n + an−1s
n−1 + . . . + a1s + a0

}
Y (s) ={

bmsm + bm−1s
m−1 + . . . + b1s + b0

}
U(s) (177)

which has had the effect of reducing the original differential equation into an algebraic equation
in the complex variable s. This equation may be rewritten to define the Laplace transform of the
output:

Y (s) =
bmsm + bm−1s

m−1 + . . . + b1s + b0
ansn + an−1sn−1 + . . . + a1s + a0

U(s) (178)

= H(s)U(s) (179)

The Laplace transform generalizes the definition of the transfer function to a complete input/output
description of the system for any input u(t) that has a Laplace transform.

The system response y(t) = L−1 {Y (s)} may be found by decomposing the expression for
Y (s) = U(s)H(s) into a sum of recognizable components using the method of partial fractions as
described above, and using tables of Laplace transform pairs, such as Table 2, to find the component
time domain responses. To summarize, the Laplace transform method for determining the response
of a system to an input u(t) consists of the following steps:

(1) If the transfer function is not available it may be computed by taking the Laplace
transform of the differential equation and solving the resulting algebraic equation
for Y (s).

(2) Take the Laplace transform of the input.

(3) Form the product Y (s) = H(s)U(s).

(4) Find y(t) by using the method of partial fractions to compute the inverse Laplace
transform of Y (s).
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Example

Find the step response of first-order linear system with a differential equation

τ
dy

dt
+ y(t) = u(t)

Solution: It is assumed that the system is at rest at time t = 0. The Laplace transform
of the unit step input is (Table 2):

L{us(t)} =
1
s
. (180)

Taking the Laplace transform of both sides of the differential equation generates

Y (s) =
1

τs + 1
U(s) (181)

=
1/τ

s(s + 1/τ)
(182)

Using the method of partial fractions (Appendix C), the response may be written

Y (s) =
1
s
− 1

s + 1/τ
(183)

= L{us(t)} + L
{
e−t/τ

}
(184)

from Table 2, and we conclude that

y(t) = 1 − e−t/τ (185)

Example

Find the response of a second-order system with a transfer function

H(s) =
2

s2 + 3s + 2

to a one-sided ramp input u(t) = 3t for t > 0.

Solution: From Table 2, the Laplace transform of the input is

U(s) = 3L{t} =
3
s2

. (186)

Taking the Laplace transform of both sides

Y (s) = H(s)U(s) =
6

s2 (s2 + 3s + 2)

=
6

s2 (s + 2) (s + 1)
(187)
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The method of partial fractions is used to break the expression for Y (s) into low-order
components, noting that in this case we have a repeated root in the denominator:

Y (s) = −9
2

(
1
s

)
+ 3

(
1
s2

)
+ 6

(
1

s + 1

)
− 3

2

(
1

s + 2

)
(188)

= −9
2
L{1} + 3L{t} + 6L

{
e−t

}
− 3

2
L

{
e−2t

}
(189)

from the Laplace transforms in Table 2. The time-domain response is therefore

y(t) = −9
2

+ 3t + 6e−t − 3
2
e−2t (190)

If the system initial conditions are not zero, the full definition of the Laplace transform of the
derivative of a function defined in Eq. (173) must be used

L
{
dny

dtn

}
= snY (s) −

n∑
i=1

sn−i

(
di−1y

dti−1

∣∣∣∣∣
t=0

)
.

For example, consider a second-order differential equation describing a system with non-zero initial
conditions y(0) and ẏ(0),

a2
d2y

dt2
+ a1

dy

dt
+ a0y = b1

du

dt
+ b0u. (191)

The complete Laplace transform of each term on both sides gives

a2

{
s2Y (s) − sy(0) − y′(0)

}
+ a1 {sY (s) − y(0)} + a0Y (s) = b1sU(s) + b0U(s) (192)

where as before it is assumed that a time t = 0 all derivatives of the input u(t) are zero. Then{
a2s

2 + a1s + a0

}
Y (s) = {b1s + b0}U(s) + c1s + c0 (193)

where c1 = a2 (y(0) + ẏ(0)) and c0 = a1y(0). The Laplace transform of the output is the super-
position of two terms; one a forced response due to u(t), and the second a function of the initial
conditions:

Y (s) =
b1s + b0

a2s2 + a1s + a0
U(s) +

c2s + c0
a2s2 + a1s + a0

. (194)

The time-domain response also has two components

y(t) = L−1
{

b1s + b0
a2s2 + a1s + a0

U(s)
}

+ L−1
{

c1s + c0
a2s2 + a1s + a0

}
(195)

each which may be found using the method of partial fractions.

Example

A mass m = 18 kg. is suspended on a spring of stiffness K = 162 N/m. At time
t = 0 the mass is released from a height y(0) = 0.1 m above its rest position. Find the
resulting unforced motion of the mass.
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Solution: The system has a homogeneous differential equation

d2y

dt2
+

k

m
y = 0 (196)

and initial conditions y(0) = 0.1 and ẏ(0) = 0. The Laplace transform of the differential
equation is {

s2Y (s) − 0.1s
}

+ 9Y (s) = 0 (197){
s2 + 9

}
Y (s) = 0.1s (198)

so that

y(t) = 0.1L−1
{

s

s2 + 9

}
(199)

= 0.1 cos 3t (200)

from Table 2.

7.2 Solution of State Equations

The Laplace transform solution method may be applied directly to a set of dynamic equations
expressed in state-space form. Consider a linear system described by its state and output equations

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t). (201)

and assume initially that the system is at rest at time t = 0, so that x(0) = 0. Then taking the
Laplace transform of both sides gives

sX(s) = AX(s) +BU(s) (202)
Y(s) = CX(s) +DU(s). (203)

The state equations may be rearranged to solve explicitly for X(s)

[sI−A]X(s) = BU(s) (204)
X(s) = [sI−A]−1BU(s) (205)

and substituted into the output equation

Y(s) = C [sI−A]−1BU(s) +DU(s)

=
(
C [sI−A]−1B+D

)
U(s). (206)

The response of the system is the inverse Laplace transform of Y(s)

y(t) = L−1
{(
C [sI−A]−1B+D

)
U(s)

}
(207)

For a single-input single-output system, the Laplace domain system response can be written

Y (s) = H(s)U(s)
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where
H(s) = C [sI−A]−1B+D (208)

is the system transfer function. Then

y(t) = L−1 {Y (s)}
as before.

If the initial conditions on the state variables are not zero, so that the initial condition vector
x(0) = x0, the Laplace transform of the state equations must be modified to include the initial
term in the Laplace transform of the derivative

sX(s) − x0 = AX(s) +BU(s)
[sI−A]X(s) = BU(s) + x0

X(s) = [sI−A]−1BU(s) + [sI−A]−1 x0 (209)

The output equation then becomes

Y(s) =
{
C [sI−A]−1B+D

}
U(s) +C [sI−A]−1 x0. (210)

which involves two terms, a forced component and an initial condition component. Then the
time-domain response is the sum of the two inverse Laplace transforms

y(t) = L−1
{(
C [sI−A]−1B+D

)
U(s)

}
+ L−1

{
C [sI−A]−1 x0

}
. (211)

7.3 The Convolution Property

The Laplace domain system representation has the same multiplicative input/output relationship
as the Fourier transform domain. If a system input function u(t) has both a Fourier transform and
a Laplace transform

u(t) F⇐⇒ U(jω)

u(t) L⇐⇒ U(s)

then we have observed in Sections 5.2 and 7.1 that a multiplicative input/output relationship
between system input and output exists in both the Fourier and Laplace domains

Y (jω) = U(jω)H(jω)
Y (s) = U(s)H(s).

Since in the time domain the system response is defined by the convolution of the input and the
system impulse response h(t)

y(t) = h(t) / u(t)

the duality between the operations of convolution and multiplication therefore hold for the Laplace
domain

h(t) / u(t) L⇐⇒ H(s)U(s). (212)

As in the Fourier transform domain this property holds for any pair of functions

L{f(t) / g(t)} = F (s)G(s). (213)

.
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7.4 The Relationship between the Transfer Function and the Impulse Response

The impulse response h(t) is defined as the system response to a Dirac delta function δ(t). Be-
cause the impulse has the property that its Laplace transform is unity, in the Laplace domain the
transform of the impulse response is

h(t) = L−1 {H(s)U(s)} = L−1 {H(s)} .
In other words, the system impulse response and the transfer function form a Laplace transform
pair

h(t) L⇐⇒ H(s) (214)

which is analogous to the Fourier transform relationship between the impulse response and the
frequency response as shown in Section 5.3.

Example

Find the impulse response of a system with a transfer function

H(s) =
2

(s + 1)(s + 2)

Solution: The impulse response is the inverse Laplace transform of the transfer func-
tion H(s):

h(t) = L−1 {H(s)} (215)

= L−1
{

2
(s + 1)(s + 2)

}
(216)

= L−1
{

2
s + 1

}
− L−1

{
2

s + 2

}
(217)

= 2e−t − 2e−2t (218)

7.5 The Steady-State Response of a Linear System

The final value theorem, introduced in Section 6.2, states that if a time function has a steady-state
value, then that value can be found from the limiting behavior of its Laplace transform as s tends
to zero,

lim
t→∞ f(t) = lim

s→0
sF (s).

This property can be applied directly to the response y(t) of a system

lim
t→∞ y(t) = lim

s→0
sY (s)

= lim
s→0

sH(s)U(s) (219)

if y(t) does come to a steady value as time t becomes large. In particular, if the input is a unit
step function us(t) then U(s) = 1/s, and the steady-state response is

lim
t→∞ y(t) = lim

s→0
sH(s)

1
s

= lim
s→0

H(s) (220)
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Example

Find the steady-state response of a system with a transfer function

H(s) =
s + 3

(s + 2)(s2 + 3s + 5)

to a unit step input.

Solution: Using the final value theorem

lim
t→∞ y(t) = lim

s→0
[sH(s)U(s)] (221)

= lim
s→0

[
sH(s)

1
s

]
(222)

= lim
s→0

H(s) (223)

=
3
10

(224)
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