
System Dynamics

I prepared these notes on system dynamics, based primarily
on Rowell and Wormley’s System Dynamics: An Introduction
[1], for my own use and share it with others with the under-
standing that the contents are not meant to be original work
of my own, but merely unofficial notes taken from Rowell and
Wormley. That means the overall structure, some phrases, and
most figures are copied directly from [1]. There is no guarantee
that the contents are true to the book, however, so use it at your
own risk. Please send any errors and typos to piconer@uw.edu.

1 Basics

1.1 State-determined systems[1, p 5]

System Dynamics can be thought of as the study of the inter-
action between a system and its environment. System vari-
ables characterize the system and can be considered inputs
(those arising from interaction with the environment) and out-
puts (those of interest).
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STATE-DETERMINED SYSTEMS 

Fundamental to system dynamics is the interaction between a system and its environment. In 
the broadest context of system dynamics, a system and its environment are defined as abstract 
entities: 

• System: A collection of matter, thoughts, or concepts contained within a real or 
imaginary boundary. 

• Environment: All that is external to the system. 

The interaction between a system and its environment is characterized in terms of a set 
of system variables, as illustrated in Fig. 1.3, which in engineering systems may be time
varying physical quantities such as forces. voltages, or pressures or mathematical variables 
with no direct physical context. These variables may be internal to the system and reflect 
lhe state of an element, for example, the force acting on a spring, or they might express the 
lime variation of some quantity at the interface between the system and its environment. It 
is useful to define two important classes of system variables: 

• Inputs: An input is a system variable that is independently prescribed, or defined, by 
the system's environment. The value of an input at any instant is independent of the 
system behavior or response. Inputs define the external excitation of the system and 
can be quantities such as the external wind force acting on a tall building system or 
the rainfall fOmling the input flow into a reservoir system. A system may have more 
than one input. 

• Outputs: An output is defined as any system variable of interest. It may be a variable 
measured at the interface with the environment or a variable that is internal to the 
system and does not directly interact with the environment. 
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Figure 1.3: Schematic representation of a dynamic system. 
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The identification of a system and inputs and outputs may be illustrated by consid
ering the design of an automobile suspension. The goal is to achieve both good handling 
characteristics, to ensure safe operation during cornering and driving maneuvers, and good 
ride comfort while traversing bumpy roads . Suspension design requires a trade-off in the se
lection of the stiffness of the springs and damping effects of the shock absorbers, to achieve 
the good handling (relatively stiff suspensions) associated with high-performance cars, and 
the good ride quality (relatively soft suspensions) associated with more conventional cars. 

A state-determined system model is a mathematical descrip-
tion (state equations) of a system whose behavior for all t ≥ t0
can be determined given the initial conditions of the system at
t = t0 and the inputs for all t ≥ t0(∴ the system “forgets”).

State variables are a minimum set of variables that uniquely
define the system response for all t. They must be independent
and complete.

Elements of systems are the primitive blocks that supply,
store, and dissipate energy and together build systems. A state-
determined system model is created by identifying proper ele-
ments and their interactions.

2 System elements: one-port[1, p 19]

One-port elements represent the spatial locations (ports) where
energy is transfered. These can generate, store, or dissipate
energy in (but not between) the following energy domains: me-
chanical, electrical, fluid, and thermal.

2.1 First law of thermodynamics

Defining power P as the positive time rate of change of the total
energy stored in the system E,

P(t) = dE/dt. (1)

We assume that this energy exchange (or power flow) between
the system and the environment occurs through a finite number
of ports.

This power flow is a result of work W being performed on (+)
or by (−) the system and heat energy H flowing in (+) or out
(−) of the system:

Pdt = ∆W + ∆H (2)

Conservation of energy can be expressed as the sum of the n
power flows into the system being equal to the time rate of
change of the sum of the energy stored in the m system ele-
ments:

n∑
i=1

Pi(t) =

m∑
j=1

dEj

dt
. (3)

This is valid for lumped-parameter systems comprised of lumped-
parameter elements that represent the behavior of a region of
the system that is considered to have somewhat uniform behav-
ior (e.g. a car’s velocity as opposed to the velocity of each point
on the car), and can be described by ODEs. This is opposed to
spatially continuous or distributed systems, which are described
by PDEs.

2.2 Mechanical system elements[1, p 21]

2.2.1 Translational

Here the power flow P(t) is the product of the power flow vari-
ables: velocity v(t) and collinear force F (t), so

P(t) = F (t)v(t). (4)

Mechanisms for energy storage and dissipation are:

• mass: kinetic energy stored as massive translating ele-
ments,

• spring: potential energy stored as elastic deformation of
springlike elements, and

• damper :energy dissipated through friction to heat.

Note that the typical linear relationships that we will see below
are ideal, and that real springs and friction (damping) behave
differently.

Ideal sources (which can give infinite power) are:

• force source: in which supplied force Fs(t) is designated
and the resulting velocity is a function of the system, and

• velocity source: in which supplied velocity Vs(t) is desig-
nated and the resulting force is a function of the system.

2.2.2 Rotational

Here the power flow P(t) is the product of the power flow vari-
ables: angular velocity Ω(t) and torque T (t) about a fixed axis,
so

P(t) = T (t)Ω(t). (5)

Mechanisms for energy storage and dissipation are:
• rotational inertia: kinetic energy stored as massive rotat-

ing elements,
• rotational spring: potential energy stored as elastic angu-

lar deformation of springlike elements, and
• rotational damper : energy dissipated through friction to

heat.

Of interest here is the rotational moment of inertia (see [1, p
34] for J of some shapes),

J =
n∑
i=1

mir
2
i ⇒ J =

∫
V
r2dm. (6)

Ideal sources (which can give infinite power) are:

• torque source: in which supplied torque Ts(t) is desig-
nated and the resulting angular velocity is a function of
the system, and

• angular velocity source: in which supplied angular velocity
Ωs(t) is designated and the resulting torque is a function
of the system.

2.3 Electrical system elements[1, p 37]

Here the power flow P(t) is the product of the power flow vari-
ables: current i(t) and voltage drop v(t), so

P(t) = i(t)v(t). (7)

Mechanisms for energy storage and dissipation are:
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• capacitor : electrical energy stored as charge q in an elec-
trostatic field,
• inductor : magnetic energy stored in a magnetic field, and
• resistor : energy dissipated through material resistivity to

heat.

Ideal sources (which can produce infinite power) are:

• current source: in which supplied current Is(t) is desig-
nated and the resulting voltage is a function of the system,
and
• voltage source: in which supplied voltage Vs(t) is desig-

nated and the resulting current is a function of the system.

2.4 Fluid system elements[1, p 44]

Here the power flow P(t) is the product of the power flow vari-
ables: fluid volume flowrate Q(t) and pressure drop P (t) across
the port, so

P(t) = P (t)Q(t). (8)

Mechanisms for energy storage and dissipation are:
• fluid capacitor : potential energy stored in the fluid,
• fluid inertance: kinetic energy stored in the fluid, and
• fluid resistor : energy dissipated through fluid work to

heat.

Ideal sources (which can give infinite power) are:

• flow source: in which supplied volume flow Qs(t) is desig-
nated and the resulting pressure is a function of the sys-
tem, and
• pressure source: in which supplied pressure Ps(t) is des-

ignated and the resulting volume flow is a function of the
system.

2.5 Thermal system elements[1, p 53]

Here the power flow P(t) is the not the product of the power
flow variables: temperature T (t) and heat flow rate q(t) (the
time derivative of heat or thermal energy H), but

P(t) = q(t) =
dH(t)

dt
. (9)

Mechanisms for energy storage and dissipation are:
• thermal capacitor : thermal energy stored as heat H, the

thermal energy, and
• resistor : energy dissipated through transferring heat by

conduction, convection, and radiation.

Ideal sources are:
• heat flow source: in which supplied heat flow Qs(t) is des-

ignated and the resulting temperature is a function of the
system, and
• temperature source: in which supplied temperature Ts(t)

is designated and the resulting heat flow is a function of
the system.

3 Generalized one-port elements[1, p 66]

Here we describe a generalization of the system elements of Sec-
tion 2 in order to use a unified method (linear graphs) to analyze
systems of the different energy domains.

3.1 Through- and across-variables

Through variables are continuous between the two terminals of
a system element, and can only be measured by “breaking” the
system and inserting a sensor (e.g. force and current).

Across variables are relative quantities because they are
measured as the differences between values at each terminal of
the element (e.g. velocity and voltage).

Generalized through- and across-variables are defined as fol-
lows.

Generalized variables

across v

integrated across x =
∫ t
0 vdt+ x(0)

through f

integrated through h =
∫ t
0 fdt+ h(0)

power passing into (non-
thermal) element

P(t) = fv

work done by system on ele-
ment for 0 ≤ t ≤ T W =

∫ T
0 Pdt =

∫ T
0 fvdt

Across- and through-variables by energy domain

System across through
∫

across
∫

through

General v f x h

Transla-
tional v F x p

Rota-
tional Ω T Θ h

Electric v i λ q

Fluid P Q Λ V

Thermal T q - H

Variable units and definitions

a
cr

o
ss

v generalized across
v m/s velocity difference
Ω rad/s angular velocity difference
v V voltage drop
P N/m2 pressure difference
T K temperature difference

th
ro

u
g
h

f generalized through
F N force
T N·m torque
i A current
Q m3/s volume flow rate
q W heat flow rate

∫ a
cr

o
ss

x generalized integrated across
x m linear displacement
Θ rad angular displacement
λ V·s flux linkage
Γ N · s/m2 pressure difference momentum

∫ th
ro

u
g
h

h generalized integrated through
p N · s momentum
h N ·m · s angular momentum
q A · s charge
V m3 volume
H J heat

3.2 A-, T-, and D-type elements

3.2.1 A-type energy storage elements

A-type elements are those in which the energy stored in the
element is a function of the across-variable and are called gen-
eralized capacitances, which, when linear, are represented by C.
See [1, p 71].

A-type elements’ elementary relationships

Element Constitutive
Equation

Elemental
Equation Energy

general-
ized h = C v f = C dv

dt
E = 1

2
C v2

trans.
mass p = mv F = m dv

dt
E = 1

2
mv2

rot. in-
ertia h = JΩ T = J dΩ

dt
E = 1

2
JΩ2

elec.
cap. q = Cv i = C dv

dt
E = 1

2
Cv2

fluid
cap. V = CfP Q = Cf

dP
dt

E = 1
2
CfP

2

thermal
cap. H = CtT q = Ct

dT
dt

E = CtT

3.2.2 T-type energy storage elements

T-type elements are those in which the energy stored in the el-
ement is a function of the through-variable and are called gen-
eralized inductances, which, when linear, are represented by L.
See [1, p 71].
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T-type elements’ elementary relationships

Element Constitutive
Equation

Elemental
Equation Energy

general-
ized x = Lf v = L df

dt
E = 1

2
L f2

trans.
spring x = 1

K
F v = 1

K
dF
dt

E = 1
2K

F 2

tors.
spring

Θ = 1
Kr

T Ω = 1
Kr

dT
dt

E = 1
2Kr

T 2

elec. in-
duc. λ = Li v = L di

dt
E = 1

2
Li2

fluid in-
ert. Λ = IfQ P = If

dQ
dt

E = 1
2
IfQ

2

3.2.3 D-type energy storage elements

D-type elements are those in which the energy dissipated and
the element has an algebraic relationship between across and
through variables and are called generalized resistances, which,
when linear, are represented by R. See [1, p 71].

D-type elements’ elementary relationships

Element Elemental Equations Power Dissipated

general-
ized f = 1

R
v v = Rf P = 1

R
v2 = R f2

trans.
damper F = Bv v = 1

B
F P = Bv2 = 1

B
F 2

rot.
damper T = BrΩ Ω = 1

Br
T P = BrΩ2 = 1

Br
T 2

elec.
resist. i = 1

R
v v = Ri P = 1

R
v2 = Ri2

fluid
resist.

Q = 1
Rf

P P = RfQ P = 1
Rf

p2 = RfQ
2

thermal
resist.

q = 1
Rt
T T = Rtq

none: impedes heat
flow

3.3 Ideal sources
Ideal sources provide the appropriate across- or through-variable
as a function of time, while the other variable depends on
the system to which the source is connected. Note in the
figure that the for through-variables, the arrow points in the
assumed-positive direction of through-variable flow and for
across-variables, the arrow points in the assumed direction of
across-variable decrease or drop. [1, p 80]

, 


80 	 Summary of One-Port Primitive Elements 

3.3.4 Ideal Sources 

In each energy domain two general types of idealized sources may be defined: 

• 	 The ideal across-variable source in which the generalized across-variable is 
fied function of time f (r), 

Vs(t) = f(l) 

and is independent of the through-variable 

• 	 The ideal through-variable source in which the generalized through-variablt 
specified function of time 

Fs(t) = f(t) 

and is independent of the across-variable. 

An example of a through-variable source is an idealized positive displacement pump i 
fluid system, in which the flow rate is a prescribed function of time and is independenl 
the pressure required to maintain the flow, while an example of an across-variable soure. 
a regulated laboratory electric power supply in which the output voltage is independen1 
the current drawn by the circuit to which it is connected. These ideal sources are not pOll 
or energy-limited and theoretically may supply infinite power and energy. 

The symbols forthe ideal sources are shown in Fig. 3.11, where in the through-varia 
source the arrow designates the assumed positive direction of through-variable flow an( 
the across-variable source the arrow designates the assumed direction of the across-varia 
decrease or drop. For each source type one variable is an independently specified funct 
of time. 

2 

t ) F,(r) 

+ '"' 2 

t) V,(r) 

(a) Through-variable source 

Figure 3.11: 

(b) Across-variable source 

Idealized source elements. 

The value of the complementary variable of each source is determined by the sys' 
to which the source is connected. A source may provide power and energy to a SySl 
or may absorb power and energy, depending upon the sign of the complementary SOL 
variable. Table 3.5 defines the source types in each of the energy domains. 

3.4 Causality

The elemental equations relate the through- and across-variables
and must hold at all times in an element, so if either the through-

or across- variable is defined, the other must be determined by
the elemental equation.

If the system-defined or given variable must be differenti-
ated in the elemental equation to obtain the other unknown
variable, the element is in derivative causality, whereas if the
system-defined or given variable must be integrated to obtain
the other unknown variable, the element is in integral causality.
All energy storage elements have either derivative or integral
causality, while all dissipative elements have algebraic causality,
since the elemental equations are merely algebraic.

3.5 Linearization of nonlinear elements

To approximate the behavior of a nonlinear element about an
operating point, perform a Taylor-series expansion of the consti-
tutive equation about the operating point, re-define the across-
and through-variables as perturbed variables (e.g. v∗ = v− v0),
and through out second- and higher-order terms to obtain the
perturbed constitutive equation. [1, p 84]

3.5.1 A-type element linearization

An A-type element has a single-valued monotonic constitutive
relationship h = F(v), which can be linearized and re-written
in terms of perturbed variables h∗ = h − h0 and v∗ = v − v0,
where h0 and v0 are the equilibrium values about which the
linearization is being performed, as

h∗ = C∗v∗ (10a)

where

C∗ =
dF(v)

dv

∣∣∣∣
v=v0

. (10b)

So we have a linearized elemental equation

f∗ = C∗
dv∗

dt
. (11)

3.5.2 T-type element linearization

A T-type element has a single-valued monotonic constitutive
relationship x = F(f), which can be linearized and re-written in
terms of perturbed variables x∗ = x−x0 and f∗ = f−f0, where x0
and f0 are the equilibrium values about which the linearization
is being performed, as

x∗ = L∗f∗ (12a)

where

L∗ =
dF(f)

df

∣∣∣∣
f=f0

. (12b)

So we have a linearized elemental equation

v∗ = L∗
df∗

dt
. (13)

3.5.3 D-type element linearization

A D-type element has an algebraic relationship v = F(f), which
can be linearized and re-written in terms of perturbed variables
v∗ = v− v0 and f∗ = f− f0, where v0 and f0 are the equilibrium
values about which the linearization is being performed, as

v∗ = R∗f∗ (14a)

where

R∗ =
dF(f)

df

∣∣∣∣
f=f0

. (14b)

So we have a linearized elemental equation

v∗ = R∗f∗ (15)

4 System models: linear graphs[1, p 92]

Linear graphs are representations of lumped-parameter systems
constructed from branches: energy ports that represent passive
or source system elements, and nodes: points where system ele-
ments connect and define points where distinct across-variables
can be measured w/respect to the system’s reference node: a
node chosen to reference other across-variables to (e.g. for me-
chanical systems it is typically an inertial reference frame).Sec. 4.2 Linear Graph Representation of One-Port Elements 93 
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Figure 4.1: Linear graph representation 
of a single passive element as a directed 
line segment. 

A typical complete linear graph, representing a simple mechanical system with a single 
source and three one-port elements, is shown in Fig. 4.2. In this case there are two nodes 
representing points in the system at which distinct velocities may be measured. In practice it 
is common, but not necessary, to designate one of the nodes as a reference node and to draw 
this node as a horizontal line (sometimes cross-hatched) as shown. In mechanical systems the 
reference node is usually selected to be the velocity of the inertial reference frame, while in 
electric systems it commonly represents the system "ground" or zero-voltage point. In fluid 
systems the reference node designates the reference pressure (often atmospheric pressure) 
from which all system pressures are measured. Apart from this special interpretation the 
reference node behaves identically to all other nodes in the graph. 
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Figure 4.2: Linear graph representation of a simple mechanical system. 

In a linear graph one-port elements are represented in the two-terminal form intro
duced in Chap. 3. Each element generates a branch in the graph and is drawn as a line segment 
between the two appropriate nodes. Associated with each branch is an elemental through
variable, assumed to pass through the line segment, and an elemental across-variable which 
is the difference between the across-variable values at the two nodes. Each linear graph 
branch thus represents the functional relationship between its across- and through-variables 
as defined by the elemental equation. Linear graph segments may be used to represent pure 
or ideal elements. 

LINEAR GRAPH REPRESENTATION OF ONE-PORT ELEMENTS 

Graph branches that represent one-port elements are drawn as oriented line segments with 
an arrow designating a sign convention adopted for the through- and across-variables. Fig
ure 4.3 shows branches for the generalized passive energy storage and dissipation ele
ments. Each branch is labeled with the generalized element type, and the across- and 
through-variables in the branch are related by the elemental equation. For the three gener
alized ideal (linear) elements the relationships are 
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In a linear graph one-port elements are represented in the two-terminal form intro
duced in Chap. 3. Each element generates a branch in the graph and is drawn as a line segment 
between the two appropriate nodes. Associated with each branch is an elemental through
variable, assumed to pass through the line segment, and an elemental across-variable which 
is the difference between the across-variable values at the two nodes. Each linear graph 
branch thus represents the functional relationship between its across- and through-variables 
as defined by the elemental equation. Linear graph segments may be used to represent pure 
or ideal elements. 

LINEAR GRAPH REPRESENTATION OF ONE-PORT ELEMENTS 

Graph branches that represent one-port elements are drawn as oriented line segments with 
an arrow designating a sign convention adopted for the through- and across-variables. Fig
ure 4.3 shows branches for the generalized passive energy storage and dissipation ele
ments. Each branch is labeled with the generalized element type, and the across- and 
through-variables in the branch are related by the elemental equation. For the three gener
alized ideal (linear) elements the relationships are 

Note that the elements and methods of linear graphs do not
assume the elements to be linear. Each branch is associated with
an elemental through-variable and its across-variable is defined
as the difference between the across variable at each node.

4.1 Linear graph representations of one-port
elements

The generalized ideal elemental equations are

• A-type element capacitance C: dv
dt

= 1
C
f

• T-type element inductance L: df
dt

= 1
L
v, and

• D-type element resistance R: v = Rf or f = 1
R
v.

The branches have the following sign convention, designated
by the arrows: the arrow is drawn in the direction in which

• the branch’s across-variable v is assumed decreasing (in
the assumed direction of the across-variable drop), and

• the through-variable f is defined as having a positive value.

3.3 Ideal sources system dynamics page 3 of 26
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94 	 Formulation of System Models Chap. 4 

• 	 For a generalized ideal A-type element (capacitance) C, 

dv I 
- =-f 	 (4.1)
dt C 

• 	 For a generalized ideal T-type element (inductance) l, 

df I 
- =-v 	 (4.2)
dt l 

• 	 For a generalized ideal D-type element (resistance) R, 

1 
v = Rf or f- -v 	 (4.3)-R 

where for energy storage elements the equations are expressed with the derivative on the 
left-hand side. 

j ~ ) )

//97; 

(a) A-type elements (b) T -type element (c) D-type element 

Figure 4.3: Linear graph representation of generalized one-port passive elements . 

As described in Chap. 3, A-type elements (with the exception of electric capacitors) 
must have their across-variable defined with respect to a constant reference value . For 
example, the velocity difference for a mass element is defined with respect to a constant
velocity inertial reference frame. The branches representing these A-type elements therefore 
must have one end connected to the reference node . Some authors use a dotted line to 
indicate this implicit connection to ground, as shown in Fig. 4.3. Apart from this notational 
difference, A-type branches are treated identically to all other branches. 

Each branch contains an arrow designating the sign convention associated with the 
across- and through-variables. The arrow on the graph element is drawn in the direction in 
which 

• 	 v, the across-variable associated with the branch is defined to be decreasing , that is, 
in the direction of the assumed across-variable "drop," and 

• 	 the through-variable f is defined as having a positive value . 

With this convention, when the elemental across- and through-variables have the same 
direction (or sign) power, P = tv , is positive and flows into the element. 

The choice of arrow direction for passive branches simply establishes a convention to 
define positive and negative values of the through- and across-variables and is arbitrary. The 
arrow direction does not affect the equation formulation procedures described in Chap. 5 
or any subsequent system analyses; the effect of reversing an arrow direction is simply to 
reverse the sign of the defined across- and through-variable on the element. The choice of 
sign convention is discussed more fully in Sec. 4.4. 

Notice that A-type elements (with the exception of electric ca-
pacitors), must have their across-variable defined with respect
to a constant reference value (denoted dashed-line).

The sign conventions for sources are similar, and are shown
in the following figure.

Sec.4.3 Element Interconnection Laws 	 9S 

Ideal source elements are represented by linear graph segments containing a circle as 
shown in Fig. 4.4 . In all source elements one variable, either the across- or through-variable, 
is a prescribed independent function of time. For source elements the arrow associated with 
the branch designates the sign associated with the source variable: 

1. 	 For a through-variable source the arrow designates the direction defined for positive 
through-variable flow. 

2. 	 For an across-variable source the arrow designates the direction defined for the across
variable drop. 

The arrow on an across-variable source branch is commonly drawn toward the reference 
node since that is usually the direction of the assumed drop in an across-variable value. 

Direction of 	 Direction of 
V, t across-variable F, t through-variable 

drop 	 f flow~ 1 ~ 
(a) Across-variable source (b) Through-variable source 

Figure 4.4: Linear graph representation of ideal source elements . 

:LEIVIENT INTERCONNECTION LAWS 

Linear graphs represent the structure of a system model and specify the manner in which 
elements are connected. The general interconnection laws for linear graph elements are 
derived in this section, with one set of laws relating across-variables and a second set 
relating through-variables, following the developments of several authors [1-3). 

4.3.1 Compatibility 

The compatibility law represents a set of constraints on across-variables on a graph that 
may be related to physical laws governing the interconnection of lumped elements. It may 
be stated: 

The sum of the across-variable drops on the branches around any closed loop on a linear 
graph is identically zero, or 

(4.4) 

for any N elements forming a closed loop on the graph. 

4.2 Element interconnection laws

4.2.1 Compatibility

Quoting the compatibility law from [1, p 95]: the sum of the
across-variable drops on the branches around any closed loop
on a linear graph is identically zero, or

N∑
i=1

vi = 0 (16)

for any N elements forming a closed loop on the graph.
If a loop is drawn as in the following figures, branches with

arrows pointed with the loop-arrow can be summed as positive,
and those pointed against negative.

------
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A compatibility equation may be written for any closed loop on a graph , including inner 
loops or outer loops, as shown in Fig. 4.5 . Because the arrows on the branches indicate 
the direction of the across-variable drop, they are used to assign the sign to terms in the 
summation; if the loop traverses a branch in the direction of an arrow, the term in the 
summation is positive, while if a branch is traversed against an arrow, the term in the sum 
is assigned a negative value. 

Loop 2 

3 

B Loop 
-----... 

Loop I 
A c 

4 

(a) (b) 

Figure 4.5: Compatibility equations defined from loops on a linear graph. (a) Some 
possible loops on a graph, and (b) a loop containing four nodes and four branches. 

Figure 4.5b shows a single loop with four branches and four nodes. With the arrow 
directions as shown, the compatibility equation for this loop is 

4 

LVi = VI - V2 + V3 - V4 = 0 (4.5) 
;=1 

We can demonstrate the compatibility law using the loop in Fig. 4.5b. The across-variable 
drop on an element is the difference between the value of the across-variable at the two 
nodes to which it is connected, for example, V I = VA - VB is the drop associated with 
element 1. If all the nodal values are substituted into Eq. (4 .5), then 

4 

LVi = (VA - VB) - (ve - VB) + (ve - VD) - (VA - VD) = 0 (4.6) 
;=1 

The physical interpretation of the compatibility law in the various energy domains is 


Mechanical systems: The velocity drops across all elements sum to zero around 

any closed path in a linear graph. Compatibility in mechanical systems is a geometric 

constraint which ensures that all elements remain in contact as they move. 


Electric systems: The compatibility Jaw is identical to Kirchoff's voltage law which 

states that the summation of all voltage drops around any closed loop in an electric 

circuit is identically zero. 


Fluid systems: Pressure is a scalar potential which must sum to zero around any 

closed path in a fluid system. 


Thermal systems: Temperature is a scalar potential which must sum to zero around 

any closed path in a thermal system. 


4.2.2 Continuity

Quoting the continuity law from [1, p 97]: the sum of through-
variables flowing into any closed contour drawn on a linear
graph is zero, or

N∑
i=1

fi = 0 (17)

for any N branches that intersect a closed contour on the graph.
If the countour is drawn as in the following figures, branches

with arrow pointed into the closed contour are positive in the
sum, those pointed out negative.
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4.3.2 Continuity 

The continuity law specifies constraints on the through-variables in a linear graph that may 
be related to physical laws governing the interconnection of elements. It may be stated : 

The sum of through-variables fiowing into any closed contour drawn on a linear graph 
is zero, that is, 

for any N branches that intersect a closed contour on the graph. 

(4.7) 

Continuity is applied by drawing a closed contour on the linear graph and summing the 
through-variables of branches that intersect the contour, as shown in Fig. 4.6. The arrow 
direction on each branch is used to designate the sign of each term in the summation . 

(a) 

\ 
\ 
I 

8 6/~ 
- -' Closed 

contour 
(b) 

Figure 4.6: The definition of continuity conditions at (a) a single node on a linear 
graph. and (b) the extended principle of continuity applied 10 any closed contour on a 

graph. 

For the special case in which a contour is drawn around a single node, the continuity 
law states that the sum of through-variables flowing into any node on a linear graph is 
identically zero. The law of continuity at a single node is illustrated in Fig. 4.6a. In this 
case fl - f2 - f3 = O. The extended principle of continuity for a general contour may be 
demonstrated by considering the example containing three nodes shown in Fig. 4.6b. The 
continuity conditions at the three nodes are 

f, - f4 + fs = 0 

f2 - fs - f6 = 0 

-f3 + f4 + f6 = 0 

at node A 

at node B 

at node C 

(4.8) 

(4.9) 

(4.10) 

For the contour enclosing all three nodes, the sum of through-variables into the contour is 

(4.11 ) 

The principle of continuity applied to any node states that there can be no accumulation 
of the through-variable at that node . If this principle did not hold, it would imply that 
the integrated through-variable is nonzero at the node, and the node would either store or 
dissipate energy, thus acting as one of the primitive elements described in Chap. 3. 

In each of the energy domains, the principle of continuity corresponds to the following 
physical constraints: 

4.2.3 Series and parallel connection of elements

Analogous to circuits, with a parallel connection of branches be-
tween two points, the across-variable for each parallel branch is
identical (the through-variable splits between branches). With
a series connection of branches between two points, the through-
variable for each series branch is identical (the across-variable
varies).

4.3 Sign conventions on one-port system ele-
ments

In addition to to following the conventions from the beginning
of this section (Section 4) is best to follow the following conven-
tions:

• define the positive model source direction compatible with
that of the physical system (and per beginning of this sec-
tion) and

• assume arrows always point away from sources, toward
grounds.

\ 
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Figure 4.9 shows a simple mechanical system consisting of a mass resting on a f 
tionless plane and moving under the influence of an external prescribed force source. F 
possible assumed positive force and velocity conditions are shown together with the COl 

sponding linear graphs. In each case the upper node represents the velocity of the mas~ 
the defined direction. An increase in the value of the across-variable indicates an increast 
velocity in that direction. The sign convention assigned to the force source defines whet 
a positive force increases or decreases the velocity of the mass. In Fig. 4.9a and d the fo 
and velocity directions are aligned and a positive force accelerates the mass in the direct. 
of the applied force. 

In practice it is often convenient to adopt a convention directing all arrows on pass 
elements away from sources and toward the reference node and then to assign a sou 
convention that is compatible with the convention defined in the physical system. 

Define positive velocity Define positive velocity 

~v v~ 

F"'--oJ ""--oJ 
Fm = F(r) F", = -F(r) 

m m 

/ 

(a) (b) 

Define positive velocity Define positive velocity 

~v v~ 

F"'--oJ F"'--oJ 
Fm=F(r)Fm= -F(r) 

m m 

(d)(c) 

Figure 4.9: Possible force and velocity orientations for a simple translational mass. 

4.4 Linear graph models of systems of one-
port elements

The following procedure from [1, p 101] can be used to construct
system graphs:

• define the system boundary and analyze the physical sys-
tem features to be included in the model: (a) inputs, (b)
outputs of interest, (c) energy domains involved, and (d)
required elements;

• draw a schematic and assign a sign convention;
• determine lumped-parameter elements: (a) source, (b) en-

ergy storage, and (c) energy dissipative;
• identify across-variables that define nodes and draw the

nodes;
• determine between which nodes each element lies and

draw them;
• select a sign convention for the passive elements and draw

arrows (see Section 4.3); and
• select the sign conventions for source elements to be con-

sistent with the physical model (see Section 4.3) and draw
them.

4.5 Physical source modeling

Since sources are often non-ideal, the following can be useful
source models:

• Thevenin equivalent (across-variable) source: an ideal
across variable source Vs in series with a resistance R,
which can be described by v = Vs − Rf.

• Norton equivalent (through-variable) source: an ideal
through variable source Fs in parallel with a resistance
R, which can be described by f = Fs − 1

R
v.
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where v is the source across-variable when it is supplying through-variable f to the 
tem. The first form states that if f = 0, the across-variable is equal to Vs, and as f incre 
the output across-variable v decreases linearly. The second form states that if v = ( 
output through-variable f is equal to F" and as v increases, the through-variable decn 
linearly. 

The two forms generate two possible models for a power-limited source with a I 
characteristic: 

1. 	Equation (4 .16) may be implemented by an ideal across-variable source of valu 
in series with a resistance element with a value R as shown in Fig. 4.19a. This Sl 

equivalent source model is known as a Thevenin equivalent source. 

2. Equation (4.17) may be implemented by an ideal through-variable source of valu 
in parallel with a resistance of value R as shown in Fig . 4.19b. This configuratic 
known as a Norton equivalent source model. 

These two models of real sources are equivalent and have identical characteristics as n 
sured at their terminals. Either may be used in the modeling of systems involving phy! 
sources that may be approximated by a linear characteristic . \ 

The load power P delivered by an equivalent source model depends on the acr 
and through-variables at the terminals. For the Thevenin source the power is 

P = vf = Vsf - Rf2 	 (4 

and for the Norton source it is 

I 	 2
P = vf = vFs - -v 	 (4

R 

The maximum power an equivalent source can provide is found by differentiating Eq. (4 
with respect to for Eq. (4.19) with respect to v and equating the derivative to zero. In ei 
case the maximum power is supplied when f = Vs/2R and v = RF.. /2 . The maxin 
power supplied is Pm,x = VsFs/4. 

Through
variable variable 

source source 
V,(I) FlO 

(a) Thevenin equivalent source (b) Norton equivalent source 

Figure 4.19: Thevenin and Norton models of power-limited physical sources. 

5 State equation formulation[1, p 120]

5.1 State variable system representation

The state equations are a set of differential equations with state
variables as unknowns that completely describe the time evolu-
tion of the system, given a set of initial conditions (expressed as
state variables). The system has order n, which corresponds to
the number state variables (minimum set of variables that com-
pletely describe the system behavior); n is equal to the number
of independent energy storage elements in the system.

5.1.1 State equations

The system state x(t) at any time t can be understood as a
point in an n-dimensional state-space , and its time-evolution
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as a trajectory on that state-space. The equation of state is

ẋ = f(x,u, t), (18)

where u(t) is a vector of r system inputs. For a linear system,
the Equation (18) becomes

ẋ = Ax + Bu, (19)

where A is an n× n matrix and B is an n× r matrix.

5.1.2 Output equations

System outputs y(t), an m-vector quantity, are variables of in-
terest and can be expressed as a linear combination of state
variables and inputs in the equation

y = Cx + Du, (20)

where C is an m× n matrix and D is an m× r matrix.

5.2 Linear graph usage

If a system graph (oriented linear graph) is connected, meaning
every point can be reached traveling along branches (usually
works for systems of one-port elements), the procedures in this
section (5) can be used.

If there are B branches in a system graph and of these S
are sources, there are 2B − S unknowns and therefore required
equations. These will be a combination of elemental, continuity,
and compatibility equations.

5.2.1 Normal tree construction

A normal tree is constructed in order to define the system pri-
mary variables, secondary variables, system order n, state vari-
ables, continuity equations, and compatibility equations. From
these, a state model can be systematically constructed by elim-
inating all secondary variables from the n state equations. The
procedure for constructing the normal tree is thus (starting with
a system graph):

1. draw the system graph nodes,
2. select tree branches using the following rules:

(a) no loops can be created,
(b) N − 1 branches must be selected (N = number of

nodes), and

3. the following order:
(a) select all across-variable sources,
(b) select as many as possible A-type energy storage el-

ements,
(c) select as many as possible D-type energy dissipative

elements, and
(d) select as many as possible T-type energy storage el-

ements.

All elements included in the normal tree are called branches,
and others called links, which, when connected to the tree form
loops.

If all across-variables sources cannot be included in the nor-
mal tree, they must form a loop, and compatibility is violated.
If at the end of the procedure an additional branch is required, it
must be a through-source, which would violate continuity since
it cannot be independently specified.

All A-type elements that cannot be included in the normal
tree and all T-type elements that are included in the normal
tree are dependent energy storage elements; all others are inde-
pendent energy storage elements, elements whose stored energy
may be independently set and controlled.

Two situations can occur when an excess of state variables
may be found by the previous procedure:

1. when there are two or more A-type elements in direct se-
ries connection, and

2. when there are two or more T-type elements in direct par-
allel connection.

This excess can be mitigated by combining these elements as
shown in the following figure with the equations

Ceq =
1∑n

i=1 1/Ci
and (21a)

Leq =
1∑n

i=1 1/Li
. (21b)

L" L = 
cq 

• 

".- ':'0 ' < .('"~'''L -
r 

~;;","" ,~ Ie: ...... 

-	 k'1 r oJ 
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\ 

It C; C = ,,- . L, 
1/ 

eq 2, I/C; 2, IlL;
I ;=1 i=1I 

)~ 
Figure 5.10: Combinalion of elemenlS in series and in parallel 10 eliminale excess stale 

variables. 

5.3 STATE EQUATION FORMULATION 

The system normal tree may be used to generate a set of state equations in terms of the 
energy storage variables on the n independent energy storage elements. In a system grapl 
with B branches, of which S represent ideal source elements, there are 2(B - S) systen 
variables associated with the passive branches : one across- and one through-variable 01 

each branch. On each branch one of these variables is a primary variable, while the othe 
is a secondary variable. The desired 11 state variables are a subset of the B - S primar~ 
variables. There are B - S elemental equations relating these primary and secondary vari 
abies for the passive branches; the normal tree is used to generate B - S continuity an< 
compatibility equations that can be used to eliminate the secondary variables associate( 
with the passive elements. 

The state equations are formulated in two steps: 

1. 	 Derivation of a set of B - S differential and algebraic equations in terms of prima~ 
variables only by starting with the passive elemental equations and using B - ~ 

compatibility and continuity equations to eliminate all secondary variables. 

2. 	 Algebraic manipulation of this set of B - S equations to produce n differentia 
equations in the n state variables and the S specified source variables. 

Since sources have one variable independently specified, only B - S elemental equation: 
for the passive elements need to be written. It is convenient to divide the number of sources ~ 
into across-variable sources SA and through-variable sources Sr, and so S = SA + Sr. Thl 
secondary variables may be eliminated from these equations by using a total of B - ~ 

independent compatibility and continuity equations fonned from (I) N - I - SA continuit~ 
equations, and (2) B - N + I - Sr compatibility equations. (The secondary variable: 
associated with sources do not enter directly into the state equation formulation; therefore 
SA continuity and Sr compatibility equations do not need to be considered .) 

5.3 State equation formulation

The following procedure can be used to give a set of state equa-
tions:

1. derive B − S differential and algebraic equations in terms
of primary variables only by starting with passive elemen-
tal equations and using B − S compatibility and conti-
nuity equations to eliminate secondary variables (note:
S(# of sources) = ST (# of through-variable sources) +
(# of across-variable sources)):
(a) generate a normal tree (see above procedure),
(b) identify primary variables as across-variables on tree-

branches and through-variables on tree-links,
(c) identify secondary variables as through-variables on

tree-branches and across-variables on tree-links,
(d) identify the system order n as the number of inde-

pendent energy storage elements (number of A-type
in normal tree plus number of T-type not in normal
tree),

(e) select the state-variables as across-variables on A-
type in normal tree and through-variables on T-type
in tree-links,

(f) write B − S elemental equations for passive (non-
source) elements with primary variables explicitly on
the left-hand-side,

(g) write N−1−SA independent continuity equations in-
volving only one secondary through-variable (branch
through-variable) by using contours that cut only one
passive branch element, and write each equation ex-
plicitly in terms of the secondary through-variable,

(h) write B−N+1−ST independent compatibility equa-
tions involving only one secondary across-variable
(link across-variable) by using loops created by re-
placing passive element links back into the tree, and
write each equation explicitly in terms of the sec-
ondary across-variable, then

2. algebraically manipulate this set of n differential equations
in the n state-variables and S specified source variables:

(a) use the continuity and compatibility equations to
eliminate all secondary variables from the elemental
equations,

(b) reduce the resulting B − S equations in the primary
variables to n equations in the n state-variables and
S source-variables, and

(c) write the resulting state equations in the standard
form.

5.4 Systems with non-standard state equa-
tions

5.4.1 Input derivative form

When the state equations have the forms

ẋ =Ax + Bu + Eu̇, and (22)

y =Cx + Du + Fu̇, (23)

which are typically due to either (1) a compatibility equation
includes the across-variable on a dependent A-type element and
an across-variable source term or (2) a continuity equation in-
cludes the through-variable on a dependent T-type element and
a through-variable source term.

These equations can be transformed into standard form by
a change-of-state-variables x′ = x−Eu, which gives

ẋ′ =Ax′ + B′u, and (24)

y =Cx′ + D′u + Fu̇ (25)

where B′ = AE + B and D′ = CE + D.

5.5 State equation generation using linear al-
gebra

If the combination of the elemental equations, after they have
been written in terms of primary variables, is difficult, linear al-
gebra methods can be used to obtain the state equations. See [1,
p 150] for the formulae.

5.6 Nonlinear systems

The same methods for finding the state equations used above
can be applied to nonlinear systems, but simplification of the
elemental equations into the state equations can be trickier or
impossible. See [1, p 152] for examples.
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5.7 Linearization of state equations

By using Taylor series expansion in the usual way, we can lin-
earize state equations into the form

ẋ∗ = Ax∗ + Bu∗ (26)

where A and B are the Jacobian matrices whose entries are

aij =
∂fi(x,u)

∂xj

∣∣∣∣
x=x0,u=u0

, and bij =
∂fi(x,u)

∂uj

∣∣∣∣
x=x0,u=u0

.

6 Energy-transducing system elements[1,
p 169]

6.1 Ideal transformers & gyrators

Whereas in the preceding, one-port elements were used to rep-
resent energy storage, dissipation, and storage in a single energy
domain, we no introduce two-port elements called transducers
which represent energy transfer between two energy domains
(e.g. motor, rack and pinion). Two-port elements are also used
in specific cases to represent energy transfer within a single en-
ergy domain (e.g. levers, gears).

Each port has a through- and across-variable associated with
it in its own energy domain. We require that power (P = f v)
flowing into each port to be positive:

P1 + P2 = 0 (27)

→
v1

v2
= −

f2

f1
= TF (28)

→
v1

f2
= −

v2

f1
= GY (29)

In order to satisfy this requirement, the two elemental equations
defined by a two-port element must be of one of the two forms
that follow.

The transformer equations arise when across-variables relate
to other across-variables and through-variables relate to other
through-variables as[

v1

f1

]
=

[
TF 0

0 −1/TF

][
v2

f2

]
(30)

where TF is called the transformer ratio.
The gyrator equations arise when across-variables relate

to through-variables and through-variables relate to across-
variables as [

v1

f1

]
=

[
0 GY

−1/GY 0

][
v2

f2

]
(31)

where GY is called the gyrator modulus.
The following steps can be used to determine the TF (similar

for GY):

1. establish positive v1, f1, v2, and f2 on a diagram,
2. determine v1-v2 relationship,
3. define TF as v1/v2, and
4. using Equation (28), define f1-f2 relationship

Some transformer ratio & gyrator modulus examples

model TF/GY notes

tr
a
n

sf
o
rm

er
T

F

rack & pinion r r: radius of pinion [1, p 176]

gear train −1/N
N = r1/r2 = n1/n2

(r: radii, n: teeth) [1, p 175]

DC motor 2NB`r see [1, p 179]

slider-crank −r r: radius of crank [1, p 171]

block & tackle −2 see [1, p 172]

lever −1/L L = l2/l1 [1, p 172]

belt drive R R = r2/r1 [1, p 172]

elec trans 1/N N = N2/N1 (turns) [1, p 172]

fluid trans A A = A2/A1 (area) [1, p 172]

G
Y hydraulic ram −1/A A: piston area [1, p 180]

disp pump −1/D D: vol disp/rad [1, p 171]

Ideal energy transduction models often need supplemented
by passive one-port elements to take into account losses and
energy storage in the energy transducer.

6.1.1 Gear ratio

The notation N : 1 denotes that the input gear θ1 rotates
N times for every output gear θ2 rotation, so θ1 = −N θ2 or
Ω1 = −NΩ2 (note that N = 1/N).

6.1.2 Mechanical levers

The transformer ratio TF for a lever can be found by assuming
small angles and recognizing that θ1 = −θ2:

x1 = `1sinθ1 = `1sinθ ≈ `1θ (32)

x2 = `2sinθ2 = −`2sinθ ≈ −`2θ. (33)

Solving for x1 = f(x2), we see x1 = − `1
`2
x2 = − 1

L
x2 = TFx2.

6.1.3 Method for “effective” capacitances

It is often that we wish to know the “effective” capacitance
(mass, inertia, etc.) of some A-type element that is connected
through one or more energy-transducing element to some source
element that is driving it. This is done by

• writing down the elemental equation of the A-type element
whose capacitance we would like to reflect,

• substituting into this equation compatibility, continuity,
and elemental (including transducer) equations as re-
quired to transform the original equation into an A-type
elemental equation that is directly connected to the source
that is driving it, and

• defining the effective capacitance Ce from this elemental
relationship: dv

dt
= 1

Ce
f.

6.2 State-equation formulation

The process of generating a state-equation for a system includ-
ing two-port elements is very close to that of Section 5.3. The
main difference is in the creation of the normal tree.

6.2.1 Normal tree

Transformers (top figure) require that one or the other, but not
both, branches be in the normal tree. Gyrators (bottom figure)
require that both or neither branches be in the normal tree.
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specify that if v I (or V2) is considered to be a primary variable, then V2 (or v I ) must be a 
secondary variable. Similarly. if fl (or f 2 ) is chosen as a primary variable. f 2 (or f l ) is by 
definition a secondary variable. The transformer equations allow only one across-variable 
and one through-variable to be used as primary variables. 

Primary variables : VI' f2 Primary variables: fl ' v2 	 Figure 6.18: The two allowable tree con
figurations for a lransformer. The links are 

Secondary variables: fl' v2 Secondary variables: vI ' 12 shown as dOlled lines. 

Since only one across-variable may be a primary variable for a transformer. only one 
branch ofa transformer may appear as a tree branch. In other words. either 

1. 	 branch I appears in the tree and branch 2 is a link. in which case VI and f 2 are the 
two primary variables and V2 and fl are secondary variables. or 

2. 	 branch 2 appears in the tree and branch I is a link, and so V2 and f I are the two primary 
variables and v I and f2 are secondary variables. 

These two allowable causalities are shown in Fig. 6. 18. 

The Gyrator: The generation of a set of independent compatibility and continu
ity equations from a tree structure containing a gyrator requires a different set of causal 
conditions. For an ideal gyrator. such as shown in Fig. 6.19, with elemental equations 

VI 	= GYf2 (6.43) 

fl 	 = - (G~) V2 (6.44) 

it can be seen that 

1. 	 if VI is taken as a primary variable . then V2 must also be considered a primary variable 
since f2 is a secondary variable. or 

2. 	 if f l is considered a primary variable. then because V2 is then by definition a secondary 
variable, f2 is also a primary variable. 

To satisfy the first case. with two primary across-variables. both gyrator branches must be 
pl aced in a tree . To satisfy the second possibility. where both through-variables are primary, 
the two gyrator branches must both be tree links. The two allowable tree structures for 
gyrators are illustrated in Fig. 6. 19. 

., 
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Primary variables: v l ,v2 Primary variables: I I' 12 
Figure 6.19: The lWO allowable tree con
figurations for a gyrator. The links are 

Secondary variables: II ' 12 Secondary variables: VI. V2 shown as dotted lines. 

6.4.3 Derivation of the Normal Tree 

The derivation of a normal tree for a system containing two-port elements is an extension 
of the procedure described in Sec . 5.2 for systems of one-port elements. The system normal 
tree for a system graph model containing two-port transducers should be formed in the 
following steps: 

Step 1: Draw the system graph nodes. 

Step 2: Include all across-variable sources as tree branches. (If all across-variable 
sources cannot be included in the normal tree, then the sources must form a loop and 
compatibility is violated.) 

Step 3: Include as many as possible of the A-type elements as tree branches such 
that the completion of the tree does not require the placement of both branches of a 
transformer or one branch of a gyrator in the tree. (Any A-type element that cannot 
be included in the normal tree is a dependent energy storage element.) 

Step 4: Include one branch of each transformer and both or neither branch of each 
gyrator in the tree so that the maximum number of T-type energy storage elements 
remain out of the tree. If this step cannot becompleted , the system model is invalid. 

Step 5: Attempt to complete the tree by including as many as possible D-type 
dissipative elements in the tree . It may not be possible to include all D-type elements. 

Step 6: If the tree is not complete after the addition of D-type elements, add the 
minimum number of T-type energy storage elements required to complete it. (Any 
T-type element included in the tree at this point is a dependent energy storage element.) 

Step 7: Examine the tree to determine if any through-variable sources are required 
to complete it. If any through-variable source can be inserted into the normal tree, 
then that source cannot be independently specified and continuity is violated. 

System graphs and their normal trees for some simple systems containing one-port energy 
storage elements and an ideal two-port transducer are illustrated in Fig. 6.2 I. In some 
cases a choice of two-port causality exists in formulating the normal tree. For example, 
in cases 2, 3, and 4 in Fig. 6.2 I either causality results in the identification of only one 
state variable. The two energy storage elements are dependent, and the energy storage 

6 

This requirement changes the procedure in Section 5.2.1 to
the following:

1. draw the system graph nodes,
2. select tree branches using the following rules:

(a) no loops can be created,
(b) N − 1 branches must be selected (N = number of

nodes),
(c) one and only one of a transformer’s two branches can

be selected,
(d) both or neither of a gyrator’s two branches can be

selected, and

3. the following order:

(a) select all across-variable sources,
(b) select as many as possible A-type energy storage el-

ements,
(c) select correct transducer branches, minimizing the

resulting number of T-type energy storage elements
in tree,

(d) select as many as possible D-type energy dissipative
elements, and

(e) select as many as possible T-type energy storage el-
ements.

6.2.2 State-equation generation

The state equations can be found using the normal tree cre-
ation methods of Section 6.2.1 and the procedure of Section 5.3
with the following alteration: two extra elemental equations
for each transformer and gyrator will be found using Equa-
tions 30 and/or 31.
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7 Operational methods for linear
systems[1, p 205]

In this section we discuss time-domain operational mathemati-
cal and graphical methods often used to develop different system
representations. The four system representations in this section
are

• state equation form

ẋ = Ax + Bu,

y = Cx + Du,

• classical form (SISO)

dny

dtn
+ an−1

dn−1y

dtn−1
+ ...+ a1

dy

dt
+ a0y

= bm
dmu

dtm
+ bm−1

dm−1u

dtm−1
+ ...+ b1

du

dt
+ b0u, (34)

• time-domain operator form, where H{} is the dynamic
transfer operator for SISO systems

y(t) = H{u(t)} (35)

=
bmSm + bm−1Sm−1 + ...+ b1S + b0

Sn + an−1Sn−1 + ...+ a1S + a0
{u(t)} (36)

where S and S−1 are the differential and integral opera-
tors; or, for MIMO systems, we define the matrix transfer
operator

y(t) = H{u(t)}, and (37)

• operational block-diagram form (see [1, p 217,218,235] for
vector state equation, state equation, and classical forms
of block-diagrams).

7.1 Transformation from state-space equa-
tions to classical form

For first-order systems, see Section 9.1; for second-order sys-
tems, see Section 9.2.

For a quick and dirty second-order example, see [1, p 219, ex
7.5]. For higher-order or MIMO systems, a more formal method
using the transfer operator is useful, and described in [1, p 228].
For higher-order SISO systems see [1, p 231-3].

These methods essentially show how to find the state equa-
tion’s transfer operator H{} and use Equation 35 to back-out
an equation of the form of Equation 34.

7.2 Transformation from classical form to
state-space equations (state space “real-
izations”)

Although the state variables may not be physical, block dia-
grams or canonical forms may be used to transform a classical
form differential equation into state-space equations. This real-
ization (including the canonical forms, which I think easiest) is
described in [1, p 233-6].

8 System properties & solution
techniques[1, p 244]

8.1 System input function characterization

8.1.1 Singularity input functions

These functions are used to determine a transient (because ape-
riodic) system response to discontinuous (or are so in their
derivative); they are identically zero for all t < 0.

1. The unit pulse is defined as

δT (t) =

{
0 for t ≤ 0
1/T for 0 < t ≤ T
0 for t > T

(38)

where T is the pulse duration. In the limit as T → 0 (or
for T << τ), we have the unit impulse,

δ(t) =

{
undefined for t = 0
0 otherwise (39)

with
∫∞
−∞Kδ(t)dt = K where K is the strength of the

scaled impulse.
2. The unit step is defined as

us(t) =

{
0 for t ≤ 0
1 for t > 0. (40)

3. The unit ramp is defined as

ur(t) =

{
0 for t ≤ 0
t for t > 0. (41)

Although not formally differentiable, these functions are re-
lated by integrals and derivatives as shown in the figure.

1.0 

o 1.0 
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U,(I) ,,, 

Time Figure 8 .3 : The unit ramp function. 

Relationships Among Singular Functions 
The ramp, step, and impulse functions represent a family of functions which, as shown in 
Fig. 8.4 are related by successive integrations. 

(1) u, (t) U,(I) 
••
. 

1.0 r-l--- 1.0 
Integration Integration

• •.... 
Differentiation Differentiation1 o 1 o 

Time Time Time 

Figure 8.4: The relationship between singularity function s. 

Time Shifting of Singularity Functions 
The singularity functions may be used to describe transient inputs that take place at a time 
other than t = O. The discontinuity associated with each function occurs when the function 
argument is zero; therefore , a step that occurs at time to may be written as usCt - to) 
since t - to = 0 at t = to. This property may be used to synthesize a transient function 
from a sum of singularity functions ; for example, Fig. 8.5 shows the function u(t) = 
us(t) - 2us (t - 1) + u,(t - 2) - u,(t - 3) . 

8.2.2 Sinusoidal Inputs 

Sinusoidal input functions such as u(t) = A sin (WI + ¢) and u(t) = A cos (wt + ¢) , 
shown in Fig. 8.6, are periodic with period T = 2rr /w seconds . These functions are de
scribed by three parameters: w, the angular frequency, (rad/s); ¢ , the phase (rad); and A, 
the amplitude of the waveform . 

Thefrequency f of a periodic waveform is defined directly from the period f = I/T 
(Hz or cycles/second). The frequency of a sinusoid is related to the angular frequency 
w = 2rrf = 2rr/T . It is also common practice to express the phase in degrees instead of 
radians , with 3600 = 2rr rad . 

Sinusoidal waveforms are used to represent many naturally occurring periodic phe
nomena. Furthermore, they are used as the basis for representing other periodic and transient 
waveforms through the process of Fourier synthesis, as described in Chap. 15 . 

8.2.3 Exponential Inputs 

Another class of theoretically and practically important input functions includes exponential 

8.1.2 Sinusoidal input functions

These have the form u(t) = Asin(ωt+ φ) and u(t) = Acos(ωt+
φ), where A is the amplitude, ω is the angular frequency (rad/s),
and φ is the phase (rad). The frequency f is found from the
relationship ω = 2πf = 2π/T where T is the period.

8.1.3 Exponential input functions

These have the form u(t) = est where s is complex in general
(possibly real). When imaginary exponents are encountered,

the following Euler formulas are useful:

ejωt = cos(ωt) + jsin(ωt) (42)

e−jωt = cos(ωt)− jsin(ωt) (43)

cos(ωt) =
1

2
(ejωt + e−jωt) (44)

sin(ωt) =
1

2j
(ejωt − e−jωt) (45)

For more properties of exponentials see [1, p 250].

8.2 Classical solution of linear differential
equations

Since we can re-write any SISO state equations in classical form
(see Section 7), we can use this formulation to solve for the out-
put. Defining the forcing function f(t) to be the right-hand-side
of Equation 34, we have

dny

dtn
+ an−1

dn−1y

dtn−1
+ ...+ a1

dy

dt
+ a0y = f(t). (46)

The general solution y(t) to this equation is found by summing
the homogeneous solution yh(t), found when f(t) = 0, and the
particular solution yp(t), found when f(t) is the specific input:

y(t) = yh(t) + yp(t). (47)

8.2.1 Homogeneous solutions

The homogeneous solution, that of Equation 46 with f(t) = 0,
can be found by the standard method of assuming a solution
yh(t) = Ceλt where C is a nonzero constant, and plugging into
the homogeneous equation to get the characteristic equation

λn + an−1λ
n−1 + ...+ a1λ+ a0 = 0. (48)

By solving this equation for λ1, λ2, ..., λn the solution with con-
stants C1, C2, ..., Cn. If there are n distinct roots to Equa-
tion 48,

yh(t) = C1e
λ1t + C2e

λ2t + ...+ Cne
λnt. (49)

If there are m repeated roots to Equation 48 and n−m distinct
roots, then the unrepeated root solutions appear in the sum as
before, but the repeated root solutions are multiplied by tk−1

for the kth repetition (e.g. for λ1 = 1 and λ2 = λ3 = λ = 2,
yh(t) = C1eλ1t + C2eλt + C3teλt).

8.2.2 Particular solutions

The particular solutions, that of Equation 46 with f(t) = f(t),
can be found by the method of undetermined coefficients, which
takes an educated guess based on the forcing function, checks,
then chooses proper coefficients to satisfy the differential equa-
tion. The following table has common forcing function with
corresponding assumed solutions.
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yp(t) assumptions for method of undetermined coefficients

term in u(t) assumed form for yp(t) test
value

k K1 0

ktn (n =1,2,...) Kntn+Kn−1tn−1+...+K1t+K0 0

keλt K1eλt λ

kejωt K1ejωt jω

kcos(ωt) K1cos(ωt) +K2sin(ωt) jω

ksin(ωt) K1cos(ωt) +K2sin(ωt) jω

The “test values” in the above table are to test whether or not
the particular solution is a component of the homogeneous so-
lution. If the test value is equal to any root of the characteristic
equation of multiplicity m, then the assumed solution must be
multiplied by tm.

8.2.3 General (total) solutions

Equation 47 is the general solution to Equation 46. Typically,
we apply the initial conditions (IC) after we have formed the
general solution. This is not strictly required - see Section 8.3.3.

8.3 System properties

8.3.1 Stability

A system is said to be in equillibrium when its stave vector
does not change with time; it is said to be at rest when it is
in equillibrium and without inputs. Every system is at rest at
x = 0.

Assymptotic stability depends on the system response to a
disturbance from an equillibrium state. If, when perturbed, it
assymptotically returns to its equillibrium state, it is assymp-
totically stable. If it diverges, it is unstable. If it remains at its
perturbed state or oscillates about the equillibrium point, it is
neutrally or marginally stable.

8.3.2 Time invariance

Time-invariant systems have A, B, C, and D matrices that do
not depend on time. It is defined as time-invariant if in delaying
the input by T , the output is also delayed by T .

8.3.3 Superposition of LTI systems

If a system is both linear and time-invariant, it is abbreviated
LTI. These systems obey the principle of superposition, which
states:

The response of an LTI system to a set of given ICs
and an input consisting of several components,

u(t) = u1(t) + u2(t) + ...+ uk(t) (50)

may be found by determining the response to (1) the
ICs with zero input and (2) each of the k individual
input components and then summing all component
responses to determine the total response.

One use of superposition is as a shortcut to a solution when
part (either yIC(t) or yu(t) below) is already known. Then we
can solve a forced differential equation with nonzero IC in two
parts:

1. determine solution yIC(t) to the equation with no inputs
and given nonzero IC,

2. determine solution yu(t) to the equation with given in-
puts and zero IC, and

3. add the two solutions for the total solution:
y(t) = yIC(t) + yu(t).

If the ICs are zero, then step (1) is not required; if it is unforced,
then step (2) is not required; so only use this if it is both forced
and has nonzero IC, and then only when one or the other is
already known, or we only care about one or the other.

8.3.4 Differentiation & integration of LTI sys inputs

If y(t) is the output of a LTI system with input u(t), and the
input is differentiated du(t)/dt and re-applied to the system,
the new output to this new input is dy(t)/dt. (Caviot: u(t) = 0
for t < 0)

If y(t) is the output of a LTI system with input u(t), and

the input is integrated
∫ t
0 u(t)dt and re-applied to the system,

the new output to this new input is
∫ t
0 y(t)dt. (Caviot: u(t) = 0

for t < 0)

8.4 Convolution & impulse response

See [1, p 264] for a great discussion of impulse response and
convolution.

8.4.1 Impulse response

The impulse response h(t) entirely characterizes a system by
allowing the computation of the response to any other input

u(t). The impulse response is the response to the system to an
impulse δ(t).

8.4.2 Convolution

Convolution is a function that maps a system’s impulse response
and input to the output. It is instantiated in the following equa-
tion:

y(t) = H{u(t)} ≡ u(t) ? h(t) =

∫ t

−∞
u(τ)h(t− τ)dτ. (51)

For time-limited inputs (u(t) = 0 ∀ t < t1 & t2 < t; t1 is often
0),

y(t) =


t∫
t1

u(τ)h(t− τ)dτ for t < t2

t2∫
t1

u(τ)h(t− τ)dτ for t2 ≤ t.
(52)

Convolution is a linear operator and is commutative, asso-
ciative, and distributive. This has some interesting properties
for “cascaded” and “parallel” systems, see [1, p 268].

9 1st & 2nd order system response[1, p
276]

Significance of 1st&2nd order to higher order systems
While most systems are of order higher than two, the rough
dynamics of many systems can be approximated by a first or
second order model, which are easy to derive and have useful
characteristics such as time constants, natural frequencies, and
damping ratios. In addition, systems of higher order than two
can be considered to be comprised of first and second order com-
ponents, which interact to form the higher order system. This
is easily understood in terms of Bode plot construction, since
real (first order) and complex conjugate pairs (second order) of
poles and zeros, regardless of the order of the system, contribute
similar cutoff and asymptotic characteristics.

This chapter deals with single-input systems (but typically
SISO), whose state equations can be written in classical form of
time-derivatives of output variables equal to time-derivatives of
input variables.

The solution method used in this section is based on super-
position and differentiability of LTI systems (see Section 8.3).
The solutions are found by (1) finding a solution yic(t): the
homogeneous-IC (i.e. unforced) solution with nonzero ICs, (2)
finding another solution yf (t): the total “forced” solution with
zero ICs, and (3) adding solutions from (1) and (2) together:

y(t) = yic(t) + yf (t) (53)

where we call yic(t) the homogeneous-IC “unforced” response
and yf (t) the total forced response, which we will also call the
input-output response.

9.1 First order linear system response

The classical form of this equation is

τ
dy

dt
+ y(t) = f(t) (54)

where τ (seconds in English units for mechanical systems and in
SI units in general) is the time constant and f(t) is the forcing
function. If we would like to re-write a first-order state equation
in this form, we can easily do so by the equation

−
1

a

dy

dt
+ y(t) = −

d

a

du

dt
+
ad− bc
a

u(t) (55)

where a, b, c, and d are the scalar state “matrices”.

9.1.1 The homogeneous-IC (unforced) response yic(t)

This is found by find the homogeneous response to Equa-
tion (54) and applying the initial condition yic(0) = y(0) to
obtain

yic(t) = y(0)e−t/τ . (56)
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9.1.2 The characteristic response yu(t)

The characteristic response is not just a particular solution, but
the general solution with zero ICs. The equation is

yu(t) = yh(t) + yp(t) (57)

= Ce−t/τ + yp(t) (58)

where C is found by the IC yu(0) = 0 and yp(t) is the particular
solution for the input u(t) (note: not the forcing function f(t)).
Input-output responses describe the response of a system to in-
puts of the form (all non-stochastic inputs) f(t) = q1u̇ + q0u.
The following table has characteristic and input-output (total
forced) responses for the singularity inputs.

Some Responses of System τ ẏ + y = q1u̇+ q0u

u(t) Characteristic re-
sponse yu(t)

Input-output (total forced)
response yf (t) for t ≥ 0

δ(t) 1
τ
e−t/τ q1

τ
δ(t) +

(
q0
τ
− q1
τ2

)
e−t/τ

us(t) 1− e−t/τ q0 −
(
q0 − q1

τ

)
e−t/τ

ur(t) t− τ(1− e−t/τ ) q0t+ (q1 − q0τ)(1− e−t/τ )

9.2 Second order linear system response

The classical form of this equation is

d2y(t)

dt2
+ 2ζωn

dy(t)

dt
+ ω2

ny(t) = f(t) (59)

where ωn is the undamped natural frequency, ζ is the (dimen-
sionless) damping ratio, and f(t) is a forcing function.

9.2.1 Transforming from state equations to classical
form

If we would like to re-write state equations in this classical form,
we must decide which output we desire. For an output of one
or the other state variable, we can use Cramer’s rule

x1 =

det

[
b1 −a12

b2 S − a22

]
det [SI−A]

u (60)

x2 =

det

[
S − a11 b1
−a21 b2

]
det [SI−A]

u (61)

then re-arrange. The denominator det [SI −A] is very impor-
tant, since it determines the system response of every variable
in a second-order system. Essentially, it describes the dynamics
of the system without inputs (since it creates the LHS of the
classical equation (59)), so we have the equality

det [SI−A] =
d2y(t)

dt2
+ 2ζωn

dy(t)

dt
+ ω2

ny(t). (62)

So, with only the A matrix, we can determine the system prop-
erties

ωn =
√
a11a22 − a12a21 (63)

ζ = −
1

2ωn
(a11 + a22)

=
− (a11 + a22)

2
√
a11a22 − a12a21

. (64)

To assign to the output y a non-state-variable, see [1, p 298,
Eqs 9.54,55]. Of course, ωn and ζ, and therefore the LHS of
Equation (59), are unchanged for any choice of output y.

If we would like to develop homogeneous-IC solutions, we
must know ICs, typically output ICs y(0) and ẏ(0). If we have
state equations, the output ICs can be found from the state and
output equations to be

y(0) = c1x1(0) + c2x2(0) (65)

ẏ(0) = c1ẋ1(0) + c2ẋ2(0)

= c1(a11x1(0) + a12x2(0))

+ c2(a21x1(0) + a22x2(0)). (66)

9.2.2 The homogeneous-IC (unforced) response yic(t)

The assumed homogeneous solution

yh(t) = C1e
λ1t + C2e

λ2t (67)

can be found by the characteristic equation

det [λI−A] = λ2 + 2ζωnλ+ ω2
n = 0 (68)

to be
λ1, λ2 = −ζωn ± ωn

√
ζ2 − 1. (69)

In the following list, homogeneous-IC solutions yic(t) will be
developed for different situations arising from Equation (69).
Note that in the following, it is always assumed that yic(0) = y0

and ˙yic(0) = 0!
• yic(t) for overdamped system: ζ > 1

The roots of the characteristic equation are

λ1, λ2 = ωn
(
−ζ ±

√
ζ2 − 1

)
(70)

and with ζ > 1, we will get real-valued λ1 and λ2. So from
Equation (67) and the ICs yic(0) = y0 and ˙yic(0) = 0, we
have

yic(t) = y0

(
−ζ +

√
ζ2 − 1

2
√
ζ2 − 1

e−ζ−
√
ζ2−1ωnt

−
−ζ −

√
ζ2 − 1

2
√
ζ2 − 1

e−ζ+
√
ζ2−1ωnt

)
(71)

which is the sum of two decaying exponentials with

τ1 = −
1

λ1
and τ2 = −

1

λ2
. (72)

This response has neither overshoot nor oscillation.

• yic(t) for critically-damped system: ζ = 1
The roots of the characteristic equation are equal:

λ1 = λ2 = −ωn (73)

So from Equation (67), realizing we must include a factor
of t, and the ICs yic(0) = y0 and ˙yic(0) = 0, we have

yic(t) = y0

(
e−ωnt + ωnte

−ωnt
)
. (74)

• yic(t) for underdamped system: 0 ≤ ζ < 1
The roots of the characteristic equation are

λ1, λ2 = −ζωn ± jωn
√

1− ζ2 = −ζωn ± jωd. (75)

where ωd = ωn
√

1− ζ2 is the damped natural frequency.
So from Equation (67), using Euler’s formulas to write in
terms of trigonometric functions, and the ICs yic(0) = y0

and ˙yic(0) = 0, we have

yic(t) = y0
e−ζωnt√

1− ζ2
cos(ωdt− ψ) (76)

where the phase angle

ψ = tan−1 ζ√
1− ζ2

. (77)

Note that as ζ increases, ωd decreases. It is some-
times useful to know the amplitude Decay Ratio (DR)
for yic(t) 6= 0:

DR =
yic(t+ Tp)

yic(t)
= e−2πζ/

√
1−ζ2 (78)

where DR is the ratio of amplitude at time (t + Tp) and
time t, where Tp = 2π/ωd.

• yic(t) for unstable system: ζ < 0
The roots of the characteristic equation have positive real
parts, and result in an exponentially increasing, unstable
response. If −1 ≤ ζ ≤ 0, the response will oscillate with
increasing amplitude; if ζ < −1, the amplitude will grow
exponentially.
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9.2.3 The characteristic response yu(t)

The input-output (total forced) response yf (t) is the general
solution to the equation

d2y(t)

dt2
+ 2ζωn

dy(t)

dt
+ ω2

ny(t) = q2
d2u(t)

dt2
+ q1

du(t)

dt
+ q0u(t)

(79)
with ICs y(0) = ẏ(0) = 0. State in another way,

yf (t) = yh(t) + yp(t) (80)

= C1e
λ1t + C2e

λ2t + yp(t) (81)

where C1 and C2 are found by applying the ICs y(0) = ẏ(0) = 0,
and yp(t) is found by the method of undetermined coefficients
(see Section 8.2.2).

Note that the RHS of Equation (79), the forcing function
f(t) contains a linear combination of the input u(t) and its time
derivatives. From superposition and derivative/integral proper-
ties of LTI systems, we can find the input-output (total forced)
response yf (t) by finding the characteristic response yu(t) to the
input u(t) and differentiating, multiplying, and summing to get
the general (total) response (see Section 9.2.4 for more details).

Since we can combine responses in this way, we
need only find the characteristic response yu(t) for u(t),
then we can find the total forced response yf (t) for
any linear combination of u(t) that may arise in the
RHS of (79), f(t). The characteristic response yu(t)
is shown in the table below for the singularity inputs.

Responses of System
d2y(t)

dt2
+ 2ζωn

dy(t)
dt

+ ω2
ny(t) = g(t)

Damping
ratio g(t) Characteristic response yu(t)

0 ≤ ζ < 1 δ(t)
e−ζωnt

ωn
√

1−ζ2
sin(ωdt)

us(t)
1
ω2
n

(
1− e−ζωnt√

1−ζ2
cos(ωdt+ ψ)

)

ur(t)

1

ω2
n

(
t+

e−ζωnt

ωn

(
2ζcos ωdt

+
2ζ2 − 1√

1− ζ2
sin ωdt

)
−

2ζ

ωn

)

ζ = 1 δ(t) te−ωnt

us(t)
1
ω2
n

(
1− e−ωnt − ωnte−ωnt

)
ur(t)

1
ω2
n

(
t− 2

ωn
e−ωnt + te−ωnt − 2

ωn

)
ζ > 1 δ(t)

1

2ωn
√
ζ2−1

(
e−t/τ1 − e−t/τ2

)
us(t)

1
ω2
n

(
1− ωn

2
√
ζ2−1

(
τ1e−t/τ1 − τ2e−t/τ2

))

ur(t)

1

ω2
n

(
t−

2ζ

ωn
+

ωn

2
√
ζ2 − 1

(
τ2
1 e
−t/τ1 − τ2

2 e
−t/τ2

))

Note: in the above table τ1 = −1/λ1 and τ2 = 1/λ2 as in Equations (72).

9.2.4 The general (total) response y(t)

As mentioned above, we can find the total response to an input
u(t) by using the principles of superposition and differentiabil-
ity/integrability of LTI systems. The input u(t) always enters
the equation in the form

f(t) = q2
d2u(t)

dt2
+ q1

du(t)

dt
+ q0u(t). (82)

If we find the response of the system to the forcing function
g(t) = u(t), yu(t), from the above table, then we can construct
the total forced response to g(t) = f(t), yf (t), by the equation

yf (t) = q2
d2yu(t)

dt2
+ q1

dyu(t)

dt
+ q0yu(t). (83)

If q1 = q2 = 0, the total forced response is just those solutions
in the table scaled by q0.

The general (total) response y(t) to an input u(t)
entering through a forcing function f(t) with ICs
y(0) = y0 and ẏ(0) = 0 is the sum of the

homogeneous-IC response yic(t) and the total forced
response yf (t):

y(t) = yic(t) + yf (t). (84)

10 General solution of the linear state
equations[1, p 331]

10.1 State variable response of linear systems

10.1.1 Homogeneous state response

The homogeneous state equation is

ẋ = Ax (85)

with an arbitrary set of ICs x(0).
The assumed solution is

xh(t) = Φ(t)x(0) (86)

where Φ(t) = eAt is the state transition matrix in terms of a
matrix exponential. For more info about state transition matri-
ces (including how to compute them) and matrix exponentials,
see Section 10.3.

10.1.2 Forced state response

The forced state equation with input u(t) is

ẋ = Ax + Bu. (87)

with an arbitrary set of ICs x(0).
The solution is typically written in one of the following forms

x(t) = eAtx(0) + eAt
∫ t

0
e−AτBu(τ)dτ (88)

x(t) = eAtx(0) +

∫ t

0
eA(t−τ)Bu(τ)dτ (89)

where τ is a dummy integration variable. Note that in Equa-
tion (89) the integral is the convolution integral.

10.2 System output response

The output equation is

y = Cx + Du, (90)

the homogeneous response is

xh(t) = Φ(t)x(0), (91)

and the forced response is

y(t) = CeAtx(0) + C

∫ t

0
eA(t−τ)Bu(τ)dτ + Du(t). (92)
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10.3 State transition matrix Φ(t)

10.3.1 Properties of Φ(t) and eAt

The state transition matrix is defined as

Φ(t) = eAt (93)

where the matrix exponential eAt is defined in the table below
as power series. Although this series always converges, rarely
does so quickly, so other methods (see Section ??) typically are
used.

Here are some properties of the state transition matrix:
1. Φ(0) = I,
2. Φ(−t) = Φ−1(t) which gives x(−t) = Φ−1(t)x(0),
3. Φ(t1)Φ(t2) = Φ(t1) + Φ(t2) which gives

x(0) = Φ(−t0)x(t0) and xh(t) = Φ(t− t0)x(t0), and
4. if A is a diagonal matrix, eAt is a diagonal matrix with

the diagonal elements eaiit.
5. x(nT ) = [Φ(T )]n x(0) ∀ n = 1, 2, . . . so if we know

Φ(t) at some time T , we can easily find it for integer mul-
tiples of T .

Some matrix exponential properties

Description Matrix exponential property

definition eAt = I + At+ A2t2

2!
+ A3t3

3!
+ ...

when t = 0 eA0 = I

inverse e−At =
(
eAt

)−1

shifting in t eA(t1+t2) = eAt1eAt2

- e(A1+A2)t = eA1teA2t only if A1A2 = A2A1

derivative d
dt
eAt = AeAt = eAtA

integral

∫ t
0 e

Atdt = A−1
(
eAt − I

)
=
(
eAt − I

)
A−1 if

A−1 exists; otherwise defined by the series

10.3.2 System Eigenvalues and Eigenvectors

We are finding homogeneous solutions of the form

xi(t) =
n∑
j=1

mije
λjt (94)

where mij are constant coefficients that depend on the system
structure and initial conditions x(0), i.e.

xh(t) = M


eλ1t

eλ1t

...

eλnt

 (95)

where

M =


m11 m12 . . . m1n

m21 m22 . . . m2n

...
...

. . .
...

mn1 mn2 . . . mnn

 . (96)

Defining M in terms of column vectors,

M =
[
m1 | m2 | . . . | mn

]
, (97)

if we plug Equation (95) into Equation (85), we get

λimi = Ami i = 1, 2, . . . , n (98)

which is the eigenvalue/eigenvector problem. The homogeneous
response is determined by the eigenvalues and eigenvectors of
A. Equation (98) can be re-written as

[λiI−A]mi = 0, (99)

for which a non-trivial solution requires

δ(λi) = det[λiI−A] = 0 (100)

which is defined as the characteristic equation of A.

Eigenvalues are the n roots of the characteristic
equation, λi.

For a physical system, the eigenvalues are either real or occur
in complex conjugate pairs.

For each eigenvalue λi, there is an eigenvector mi found
by substituting into Equation (100). No unique solution exists,
since mi = αmi ∀ m 6= 0.

The modal matrix M is defined as the matrix made of an
arbitrary set of corresponding eigenvectors mi,

M =
[
m1 | m2 | . . . | mn

]
(101)

Now we can write Equation (95) as

xh(t) = MeΛtα (102)

= α1m1e
λ1t + α2m2e

λ2t + ...+ αnmne
λnt (103)

where

eΛt =


eλ1t 0 . . . 0

0 eλ2t . . . 0

...
...

. . .
...

0 0 . . . eλnt

 (104)

and (103) is a very useful form, showing that the solution is a
linear combination of eigenvalue exponentials, in the directions
of the eigenvectors, weighted by constants determined by the
initial conditions. For distinct eigenvalues

α = M−1x(0). (105)

Note that the eigenvector columns of M must match the
columns in which the corresponding eigenvalue appears in eΛt.
This gives the state transition matrix for n distinct eigenvalues
(since M−1 does not exist otherwise)

Φ(t) = MeΛtM−1 . (106)

This is itself a convenient way of computing Φ(t) (note: the
Voyage 200 calculator can compute eigenvalues and eigenvec-
tors) and leads to the important result:

the homogeneous response of any state variable in
the system from any ICs x(0) is a linear combina-
tion of n modal components eλit where λi are the
eigenvalues of A.

10.3.3 Systems with complex eigenvalues

If some roots of the characteristic equation arise in complex
conjugate pairs λi,i+1 = σ ± jω, the modal matrix will have

corresponding terms e(σ±jω)t = eσte±jω , which can be con-
verted into trigonometric form using the Euler relationships (44)
and (45) to eσt sin ωt or eσt cos ωt.

10.3.4 Systems with repeated eigenvalues

These systems are not dealt with in [1], but a preliminary dis-
cussion is presented here in Sec 10.3.9. The methods developed
in 10.3.6 for finding the response do not apply to these systems.

10.3.5 Stability of linear systems

The definition of asymptotic stability is equivalent to stating
that the homogeneous response of all state variables must de-
cay to zero in the absence of an input:

lim
t→∞

xi(t) = 0 ∀ i = 1, 2, . . . , n. (107)

This leads to the summary:

A linear system described by state equations
ẋ = Ax + Bu is asymptotically stable iff all eigen-
values of the matrix A have negative real parts.

Asymptotic instability occurs when at least one eigenvalue
has a positive real part. Marginal asymptotic stability occurs
when at least one eigenvalue has zero real part; if it also has a
zero imaginary part the system will get “stuck” at some con-
stant nonzero state, if instead it also has a nonzero imaginary
part the system will oscillate with constant amplitude about a
finite state.
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10.3.6 Transformation of state variables & modal de-
composition

For general linear transformations of the state variables

x = Pq (108)

see [1, p 349] for a full discussion.
Using these methods, if a system has n distinct eigenvalues,

we can transform the state variable s.t. A becomes a diagonal
matrix which can provide insight into the internal structure of
a system. The transformed state equations are

q̇ = Λq + B′u (109)

y = C′q + Du (110)

where q = M−1x and M is the modal matrix of eigenvectors,

Λ =


λ1 0 . . . 0

0 λ2 . . . 0

...
...

. . .
...

0 0 . . . λn

 , (111)

B′ = M−1B, and C′ = CM.
This gives Φ(t) = eΛt as given by Equation 104 (the modal

matrix of eigenvectors for the decoupled system is simply the
identity matrix). This gives the homogeneous response in the
simple uncoupled form

qi(t) = qi(0)eλit. (112)

Furthermore, in this form the solution can be written more
directly as a modal decomposition

x(t) = q1(t)m1 + q2(t)m2 + ...+ qn(t)mn (113)

where qi(t) is the i-th component of q. This equation also ap-
plies when the modal matrix M comprised of both eigenvectors
and generalized eigenvectors [2, p 312], so it is most certainly
true that any solution to the state equation can be written in
terms of its modal components. This is obvious when we think
geometrically: the set of eigenvectors and generalized eigenvec-
tors, since by definition linearly independent, constitutes a basis
for the state space Σ. The fact that the input is mapped by B
to Σ also makes the next point apparent: even the response
of a system to an input may be written in terms of its modal
components, and (113) still applies:

B(t)u(t) = β1(t)m1 + β2(t)m2 + ...+ βn(t)mn. (114)

The state equation can now be written as

q̇1(t)m1 + q̇2(t)m2 + ...+ ˙qn(t)mn =

q1(t)Am1 + q2(t)Am2 + ...+ qn(t)Amn

+β1(t)Am1 + β2(t)Am2 + ...+ βn(t)Amn.

For the special case of n eigenvectors, the state equation
becomes

(q̇1(t)− λ1q1(t)− β1)m1 + (q̇2(t)− λ2q2(t)− β2)m2 + ...

+ ( ˙qn(t)− λnq′n(t)− βn)mn = 0.

Since the set of eigenvectors {mi} is linearly independent,

˙qn(t) = λnqn(t) + βn for i = 1, 2, ..., n. (115)

So for the case of a constant A matrix with a full set of eigenvec-
tors, the system is completely described by a set of n uncoupled
scalar equations whose solutions are of the form

qi(t) = e(t−t0)λiqi(t0) +

∫ t

t0

e(t−τ)λiβi(τ)dτ. (116)

For systems without a full set of eigenvectors, a similar map-
ping can be performed using the modal matrix M comprised of
both eigenvectors and generalized eigenvectors [2, p 312]. This
transformation into normal form results in a system

q̇ = Jq + B′u (117)

y = C′q + Du (118)

where q = M−1x, J = M−1AM is the Jordan canonical form
matrix (see Sec 10.3.9), B′ = M−1B, and C′ = CM. Note that
this system is as nearly decoupled as possible, but not fully so.

10.3.7 The invariant subspace

The invariant subspace of a linear map P : V → V for a vector
space V is a subspace ν ⊆ V for which P(ν) is contained in ν.
This subspace can be termed P-invariant. The space spanned
by eigenvectors of P is P-invariant. A subspace spanned by the
eigenvectors (assuming P has n distinct eigenvectors) will be
mapped by P back to the same subspace.

This is important in linear systems theory when we are inter-
ested in exciting specific modes of the system without exciting
others. To excite a specific mode or modes (which span an in-
variant subspace) with only initial conditions, choose an initial
condition x(0) that lies in the desired invariant subspace, i.e. se-
lect x(0) to be a linear combination of the eigenvectors spanning
the invariant subspace.

The case of real eigenvectors is easiest. We desire an initial
condition that lies in the invariant subspace of A, and this can
by achieved by selecting the coefficients of the linear combina-
tion of eigenvectors (which happen to be the initial conditions
of the diagonalized system),

x(0) = Mα (119)

= α1m1 + α2m2 + ...+ αnmn (120)

= Mq(0). (121)

So select αi of only the desired modes to be nonzero, and the re-
sulting linear combination yields an A-invariant initial condition
x(0). The above figure shows two examples of initial conditions
for such a system: in blue, one selected by the preceding method
and lying in the invariant plane spanned by the eigenvectors of
the desired modes (1 and 3); in purple, one selected that did not
lie in the that plane and required the excitation of the second
mode, which in this case was unstable (probably why we didn’t
want to wake it up).

The case of complex eigenvectors is a bit more subtle. The
real A-invariant subspace spanned by a complex conjugate pair
of eigenvectors m1 and m2 is what we are concerned with,
since our initial conditions must be real. This real subspace
is spanned by

{Re[m1], Im[m1]} or {Re[m2], Im[m2]} . (122)

This arises from recognizing the requirement that, in order to
obtain a real initial condition, the linear combination coefficient
vector α must contain complex conjugate pairs of complex num-
bers for complex eigenvectors.

The above figure shows two examples initial conditions for
such a system: in blue, one selected by the preceding method
and lying in the invariant plane spanned by the real and imag-
inary components of the eigenvectors of the desired modes (1
and 2); in purple, one selected that did not lie in the that plane
and required the excitation of the second mode, which in this
case was unstable.
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10.3.8 Response of linear systems to singularity inputs

Some special cases are worked out in [1, p 353] for singularity
inputs δ(t), us(t), and ur(t).

10.3.9 Systems with repeated eigenvalues

This topic is fully treated in [2, p 250], but not in [1]. Every
n×n matrix has n eigenvalues, and for each distinct eigenvalue
λi, a linear independent eigenvector mi exists. For every eigen-
value λi repeated µi times (termed algebraic multiplicity of λi),
any number qi (termed geometric multiplicity or degeneracy of
λi) up to and including µi of independent eigenvectors may ex-
ist: 1 ≤ qi ≤ µi. qi is equal to the dimension of the null space
of A− Iλi,

qi = n− rank(A− λiI). (123)

This gives rise to three cases:
Fully degenerate: qi = µi In this case, the eigenvalue

problem has qi = µi independent solutions for mi. So, even
though there were not n distinct eigenvalues, n distinct eigen-
vectors still exist and we can diagonalize or decouple the system
as before.

Simple degeneracy: qi = 1 In this case, the eigenvalue
problem has qi = 1 independent solutions for mi. We would
still like to construct a basis set of n independent vectors, but
they can no longer be eigenvectors, and we will no longer be
able to fully diagonalize or decouple the system. There are mul-
tiple ways of doing this (e.g. Gram-Schmidt), but the typical
and most nearly diagonal way is to construct µi−qi generalized
eigenvectors (here also called mi), which will be included in the
modal matrix M along with the eigenvectors. The generalized
eigenvectors are found by solving the usual eigenvalue/vector
problem for the first eigenvector m1

i corresponding to λi, then
solving it again with the following equations to find the gener-
alized eigenvectors

(A− λi)m2
i = m1

i

(A− λi)m3
i = m2

i

...

This forms the modal matrix M . The block-diagonal Jordan
form matrix, analogous to the diagonal Λ is

J = M−1AM, (124)

which gives the most-decoupled state transition matrix

Φ(t) = MeJtM−1 . (125)

General degeneracy: qi = 1 If 1 < qi < µi, the preceding
method applies, but it may be ambiguous as to which eigenvec-
tor the generalized eigenvectors correspond (or how many for
each). This can be approached by trial and error or a system-
atic method presented in [2, p 255].

10.4 Controllability & observability

Two very important system properties, controllability and ob-
servability are briefly presented here (for more see [2, p 373]).
Two similarity transforms are helpful in transforming the sys-
tem into forms in which controllability and observability are
apparent; they are that using the modal matrix, x = Mq, and
the QR decomposition. The former leads to a Jordan form
of the state equations, the latter to the Kalman’s controllable
and/or Kalman’s observable form.

The system representation or realization {A, B, C, D} can
be considered as the maps

A : Σ→ Σ

B : U r → Σ

C : Σ→ Y m

D : U → Y m

between the different sets U r, the r-dimensional input set; Σ,
the n-dimensional state-space; and Y m, the m-dimensional out-
put set (see figure below).

• 

374 Controllability and Observability for Linear Systems 

L, different matrices can be used to describe the same system . A partl 
{A, n, c, D} is called a system representation or realization. In some 
matrices will be constant. In othe r cases they will depend on time , in eithen 
uous fashion {A(t) , B(t) , C(t) , D(t)} or in a discrete fashion , {A(k) , B(k), C 
Both the continuous-time and discrete-time cases are considered simultaneo! 
the notation of Chapter 3. The times of inte rest will be refe rred to as the set 
'j, where 'j can be a continuous interval [to, tfl, or a set of discrete points [to , t 

At any particular time t E 'j, the four system matrices are representation 
formations on the n -dimensional state space L, the r-dimensional input spa 
the m-dimensional output space 0r . That is, 

A : L~L 

B : OU'~L 

C : "L~ uym 

0: ou' ~ uym 

Figure 11 .1 symbolizes these relationships . 

11.21. Controllability 

Controllability is a property of the coupling between the input and the state'l 
involves the matrices A and B. 

Definition 11.1. A linear system is said to be controllable at to if it is 
find some input function (or sequence in the discrete case) u(t) , defined 0 

which will transfer the initial state x(to) to the origin at some finite time t1 E 
That is , there exists some input uI1 o, I,J , which gives x(t l ) = 0 at a finite t1 E IJ. 
true for all initial times to and all initial states x(to), the system is completel 
lable . 

Some authors define another kind of controllability involving the outp 
The definition given above is referred to as state controllability. It is the mos 
definition , and is the only type used in this text , so the adjective " state" is 
Complete controllability is obviously a very important property. If a syst 
completely controllable , then for some initial states no input exists which can 

Figure 11.1 

10.4.1 Definitions

Controllability [2, p 374] gives the following definition of con-
trollability.

A linear system is said to be controllable at t0 if it
is possible to find some input function (or sequence
in the discrete case) u(t), defined over t ∈ T , which
will transfer the initial state x(t0) to the origin at
some finite time t1 ∈ T , t1 > t0. That is, there
exists some input u[t0,t1], which gives x(t1) = 0 at
a finite time t1 ∈ T . If this is true for all initial
times t0 and all initial states x(t0), the system is
completely controllable.

Observability [2, p 375] gives the following definition of ob-
servability.

A linear system is said to be observable at t0 if x(t0)
can be determined from the output function y[t0,t1]

(or output sequence) for t0 ∈ T and t0 ≤ t1, where
t1 is some finite time belonging to T . If this is true
for all t0 and x(t0), the system is said to be com-
pletely observable.

10.4.2 Dependence on model

Both controllability and observability are properties of the spe-
cific system representation {A, B, C, D}, which is not unique
for a given system. While this is true, a system lacking controlla-
bility can typically be granted it with the addition of actuators,
just as a system lacking observability can typically be given it
by adding sensors.

If there exists a system representation of order n that is both
controllable and observable, all system representations of order
n are both controllable and observable. If there exists a system
representation of order n that is either not controllable or not
observable, no system representation exists that is both, some
may be controllable but not observable, others may be observ-
able but not controllable, and still others may be neither.

10.4.3 LTI systems with distinct eigenvalues

In this case there is no need to refer to any specific time interval.
The system can be decomposed into its Jordan form as

q̇ = Λq + B′u (126)

y = C′q + Du (127)

where q = M−1x, Λ = M−1AM is the modal matrix of eigen-
vectors, B′ = M−1B, and C′ = CM. This fully decoupled form
allows us to easily ascertain the controllability and observability
of the system representation.
Controllability criterion 1

The constant coefficient system, for which A has dis-
tinct eigenvalues, is completely controllable if and
only if there are no zero rows of B′ = M−1B.

Observability criterion 1

The constant coefficient system, for which A has
distinct eigenvalues, is completely observable if and
only if there are no zero columns of C′ = CM.

10.4.4 LTI systems with arbitrary eigenvalue

This case can be handled using a variation of the distinct eigen-
values criteria, but the method is lengthy, since it involves find-
ing the modal decomposition into Jordan form. The gist of it
is that for a decoupled system mode to be controllable, it must
either have a direct connection to the input (nonzero row of B′)
or be coupled to another mode that has one. So nonzero rows
of B′ can be tolerated if they are not the last row associated
with a given Jordan block. Similarly, a system is observable
if the first column associated with a given Jordan block is not
identically zero.

The more useful criteria follow.
Controllability criterion 2

A constant coefficient linear system is completely
controllable if and only if the n× rn matrix of

P =
[
B|AB|A2B| · · · |An−1B

]
, (128)

called the controllability matrix, has rank n. The
number of partitions of P required to achieve rank
n is termed the controllability index, with lower in-
dices implying “better” controllability.

Observability criterion 2
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A constant coefficient linear system is completely
observable if and only if the n×mn matrix

Q =
[
C

ᵀ|Aᵀ
C

ᵀ|A2
ᵀ
C

ᵀ| · · · |An−1ᵀ
C

ᵀ
]
, (129)

called the observability matrix, has rank n. The
number of partitions of Q required to achieve rank
n is termed the observability index, with lower in-
dices implying “better” observability. Note that the
complex conjugates are typically not required.

10.4.5 Stabilizability & detectability

Weaker versions of controllability and observability are stabiliz-
ability and detectability. The are defined as follows.
Stabilizability

A linear system is said to be stabilizable if all its
unstable modes, if any, are controllable.

Detectability

A linear system is said to be detectable if all of its
unstable modes, if any, are observable.

11 The transfer function[1, p 395]

The transfer function is a representation of input-output dy-
namics of linear systems. There are different methods for find-
ing the system transfer function, but the one presented here
is called the generalized exponential method (note that other
methods give slightly different interpretations of the transfer
function). It is developed in terms of the particular solution of
the system to an exponential input

u(t) = U(s)est (130)

where the complex variable is s = σ + jω and the amplitude
U(s) is complex in general. It can also be written

u(t) = U(s)e(σ+jω)t = U(s)eσt(cos ωt+ j sin ωt), (131)

which shows that this form of input covers a broad range of in-
puts of interest, including decaying sinusoidal waveforms. This
derivation provides a basis for determining the steady-state re-
sponse characteristics of periodic waveforms.

11.1 SISO systems

Given the classical representation (note this is different from
Equation (34)

an
dny

dtn
+ an−1

dn−1y

dtn−1
+ ...+ a1

dy

dt
+ a0y

= bm
dmu

dtm
+ bm−1

dm−1u

dtm−1
+ ...+ b1

du

dt
+ b0u, (132)

and the assumed particular solution

yp(t) = Y (s)est (Y (s) ∈ C), (133)

the transfer function is defined as the ratio of the response am-
plitude Y (s) to the input amplitude U(s):

H(s) =
Y (s)

U(s)
=
bmsm + bm−1sm−1 + · · ·+ b1s+ b0

ansn + an−1sn−1 + · · ·+ a1s+ a0
. (134)

The output can now be written as

yp(t) = H(s)U(s)est. (135)

11.2 Relation to the transfer operator H{}
The only differences for SISO systems between H(s) and H{}
are in interpretation. H(s) is an algebraic quantity describing
the system particular response to an exponential input and can
be manipulated using linear algebra, whereas H{} is an opera-
tor that is independent of the form of the input and implies a
causal relationship between system input and output.

The complex variable s and the differential operator S{} can
be used interchangeably for LTI systems.

11.3 Poles and zeros

The numerator and denominator of Equation (134) can be fac-
tored into the form

H(s) =
N(s)

D(s)
= K

(s− z1)(s− z2) . . . (s− zm−1)(s− zm)

(s− p1)(s− p2) . . . (s− pn−1)(s− pn)
(136)

where K = bm/an is the gain constant.
Confusion can arise from definitions of poles and zeros being

inconsistent between texts. [1] uses the definition that sets the
numerator and denominator of (136) equal to zero. Another
takes the poles and zeros to be the values of s such that the
limit of (136) as s approaches a pole or zero to go to ∞ or 0.
These two approaches lead to different poles and zeros in the
case of pole-zero cancellation, see Sec 11.3.5.

11.3.1 The pole-zero plot

Some system properties can be discovered from the plot of the
poles and zeros on the complex s-plane as shown in the following
figure.Sec. 12.4 System Poles and Zeros 401 

3(s) 
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s-plane0- zero 
~---- j2 
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Figure 12.3: The pole-zero plot for a typical third-order system with one real pole, 
a complex conjugate pole pair, and a single real zero. 

define the components in the homogeneous response . It was shown in Sec. 8.3.1 that the 
unforced response of a linear S1SO system to a set of initial conditions is 

n 

Yh(t) = L CeAi
( (12.14) 

i=1 

where the constants Ci are detennined from the given set of initial conditions and the expo
nents Ai are the roots of the characteristic equation or the system eigenvalues. Comparison 
of Eqs. (8.24) and (12.11) shows that in tenns of the transfer function the characteristic 
equation is -/"' 

D(s) = sn + an_lsn- I + ... + ao = 0 (12.15) 

and its roots are the system poles, that is, Ai = Pi, leading to the following important 
relationship: 

The transfer function poles are the roots of the characteristic equation and also the 
eigenvalues of the system A matrix (as discussed in Chap. 10). 

The homogeneous response may therefore be written 

n 

Yh (t) = L CieP,( (12.16)
.,-'

i=1 

The locations of the poles in the s -plane therefore define the n components in the homoge
neous response as follows . 

)1. A real pole Pi = -a in the left half of the s-plane defines an exponentially decaying 
component C e-a ( in the homogeneous response. The rate of the decay is detennined 
by the pole location; poles far from the origin in the left half-plane correspond to 
components that decay rapidly, while poles near the origin correspond to slowly 
decaying components . 
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11.3.2 System poles and the homogeneous response

Although developed here from the particular response, the
transfer function still describes the entire differential equation
of the system, so the homogeneous response is embedded in the
transfer function. The characteristic equation is the denomi-
nator of the transfer function set equal to zero, so the system
eigenvalues are equal to the system poles (including canceled
ones, see Sec 11.3.5). This gives the homogeneous solution

yh(t) =

n∑
i=1

Cie
λit =

n∑
i=1

Cie
pit (137)

where Ci is found from the initial conditions. The locations of
the poles define the n components of the homogeneous response
as follows:

1. pi = −σ : the component Ce−σt is a decaying exponen-
tial,

2. pi = 0 : the component C is a constant amplitude,
3. pi = +σ : the component Ceσt is an increasing exponen-

tial,
4. pi = −σ ± jω : the component Ae−σt sin(ωt + φ) is a

decaying sinusoid,
5. pi = ±jω : the component A sin(ωt + φ) is a sinusoid,

and
6. pi = +σ ± jω : the component Aeσt sin(ωt + φ) is an

increasing sinusoid.

Note that the larger the distance along the real-axis from the
origin, the greater the exponential decay or increase σ. Also,
the larger the distance along the imaginary-axis from the origin,
the greater the frequency of oscillation ω.

For second-order systems,

p1, p2 = −ζωn ± ωn
√
ζ2 − 1. (138)

For underdamped second-order systems,

p1, p2 = −ζωn ± jωn
√

1− ζ2. (139)

The following figure shows the pole locations and their relation-
ships to ωn and ζ.
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negative real axis . The poles for an underdamped second-order system therefore lie 
semicircle with a radius defined by Wn and at an angle defined by the value of the 
ratio ~. 
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Figure 12.6: Definition of the parameters Wn and { for an underdamped second-order 
system from the complex conjugate pole locations. 

12.4.3 System Stability 

The stability of a linear system may be detennined directly from its transfer function. An 
order linear system is asymptotically stable only if all the components in the homl'\opn~ni 
response from a finite set of initial conditions decay to zero as time increases , or 

n 

lim" Cie Pi( = 0
I-'OO~ 

i=) 

where the Pi are the system poles. In a stable system all components of the homogeneoi 
response must decay to zero as time increases. If any pole has a positive real part, there 
component in the output that increases without bound, causing the system to be 

In order for a linear system to be stable, all its poles must have negative real parts, that 
is , they must all lie within the left half of the s-plane. An "unstable" pole, lying in the 
right half of the s-plane, generates a component in the system homogeneous response 
that increases without bound from any finite initial conditions. A system having one 
or more poles lying on the imaginary axis of the s-plane has nondecaying oscillatory 
components in its homogeneous response and is defined to be marginally stable. 
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11.3.3 System stability in terms of poles

Asymptotic stability An asymptotically stable is a system
that, with the input identically zero, for all initial conditions, in
the limit as time approaches infinity, the state asymptotically
approaches zero. Since pole-zero cancellation does not play a
role in initial-condition response, all the systems eigenvalues are
identical to its poles, and vice-versa. For asymptotic stability,
all its poles must have negative real parts. A marginally stable
system requires that at least one pole have zero real part, and
no poles with positive real parts. An unstable system is one
that has at least one pole with a positive real part.

Bounded-input-bounded-output stability (BIBO) A
system is BIBO if, with initial conditions all zero, no bounded
input causes an unbounded output. Pole-zero cancellation can
play a role here, since a transfer function governs the input-
output relationship, and an unstable pole could be canceled by
a corresponding zero. While the transfer function may have no
unstable poles, due to pole-zero cancellation there remains the
possibility of an unstable mode being excited by the input. If
the system is not asymptotically stable, it can still be BIBO
stable iff (1) its B matrix is such that the no unstable mode is
excited by any input u(t) or (2) its C matrix is such that the
unstable mode is not “noticed” (although this is not practical).

11.3.4 Interpretation of poles and zeros

Poles and zeros affect the system output in different ways, de-
pending on the s-plane location of the pole or zero, the type of
input present (sinusoidal, etc.), and the type of output that is
of interest (transient, steady-state, etc.).

Poles Poles, when there is no pole-zero cancellation (see
Sec 11.3.5), are identical to the system eigenvalues, and are al-
ways a subset of them. This means that, along with the initial
conditions, they always completely determine the homogeneous
response of the system, as in (137). Note that this remains true
even when pole-zero cancellation occurs (see Sec 11.3.5).

Poles completely determine system stability. Depending on
the given definition of poles and zeros, canceled poles and ze-
ros may not be considered poles and zeros, but regardless, even
these canceled poles govern stability due to initial conditions (so
be sure to include them in an analysis of stability).

A periodic input can be described (by a Fourier series) as a
sum of sinusoidal inputs and, by superposition, we can sum the
responses of the system to each sinusoidal input. This means
that the frequency response function H(jω) governs the steady-
state response. The poles affect such a system’s response to
periodic inputs by the manner in which they govern the bode
plot construction.

Zeros Zeros are relevant only to response of the system
to the input, since initial condition responses are unaffected by
the zeros. For periodic inputs in steady-state, zeros affect the
frequency response function in a manner analogous to the poles.

11.3.5 Pole-zero cancellation

Pole-zero cancellation occurs occasionally. Recall that this oc-
curs for a transfer function, which describes the input-output
relationship, and tells us nothing of the system’s response to
initial conditions. The canceled pole remains a component of
the homogeneous response to initial conditions, but is consid-
ered not to affect the input-output relationship (think about
it in terms of Laplace transforms of the input-output differen-
tial equation - there is no pole-zero cancellation for the initial
condition term).

11.4 Transfer functions of interconnected sys-
tems

For systems in series and parallel, the transfer functions can
be combined. Two systems in series (cascading series), mean-
ing the output of the first is the input of the second, if it can
be assumed that the second does not “load” the first (i.e. the
first system acts as an ideal source to the second), can combine
transfer functions in the following way

H(s) = H1(s)H2(s). (140)

For two systems in parallel, meaning that they share the
same input and their outputs are summed, the combined trans-
fer function can be written as

H(s) = H1(s) +H2(s). (141)

11.5 State-space to transfer functions

The transfer function matrix can be constructed from the state
equations to be

H(s) =
C adj (sI−A)B + D det (sI−A)

det (sI−A)
. (142)

The structure of H(s), the m× r matrix, is

H(s) =


H11(s) . . . H1r(s)

..

.
. . .

...

Hm1(s) . . . Hmr(s)

 (143)

where Hij(s) is the transfer function from the jth input to the
ith output.

For SISO systems,

H(s) = C(sI−A)−1B + D, (144)

which can be calculated using Equation (142).

11.6 Minimal realizations [2, p 408]

Definition

Of all possible realizations of H(s), {A, B, C, D} is
said to be an irreducible (or minimum) realization if
the associated state space has the smallest possible
dimension dim(Σ).

A minimal realization is both completely controllable and com-
pletely observable. In the case of a scalar transfer function, the
minimum dimension required is equal to the order of the de-
nominator of the transfer function after all common pole-zero
cancellations are made.

A realization obtained from the methods presented earlier,
linear graphs, are the most complete descriptions of the internal
system. They may not be fully controllable or observable, but
this is not always important. A minimal realization makes most
sense when the transfer function (scalar or otherwise) is mea-
sured, which describes the system with input and output and
does not describe the internal system. A minimal realization

of this transfer function would not lose any information in this
case.

It is instructive to start with a state space realization of di-
mension n, find the corresponding transfer function H(s), and
find a minimal realization of this of dimension n1. If n = n1,
the system is completely characterized by H(s), it is both com-
pletely controllable and observable, and its poles and eigenval-
ues are the same. If n > n1, then the information about n−n1
modes was lost (and it could have been unstable, who knows).
For a scalar transfer function, the order of the irreducible re-
alization is the degree of the denominator after all common
pole/zero pairs are canceled.

11.6.1 transmission zeros

Transmission zeros are values of z for which

rank

[
A− zI B

C D

]
< rank

[
A B

C D

]
. (145)

12 Impedance-based modeling methods
[1, p 422]

This chapter is primarily covered in Professor Joseph Garbini’s
Appendix A, but I would like to make a few comments here.

12.1 Input impedance (impedance of system)

When an ideal source is connected to a system, either its across-
or through-variable is given, and the other is a function of the
system (e.g. back emf, current “draw”) and the given source
variable. For an across-variable source, Fin(s) = Y (s)Vin(s)
where Y (s) is the input admittance. For a through-variable
source, Vin(s) = Z(s)Fin(s), where Z(s) is the input impedance.
Ignoring causality, Y (s) = 1/Z(s). This is usually just called
the impedance of the system, since this is the impedance that
the source “sees” (drives).

12.2 Quick transfer-function generation

This method can be used to either to obtain a general expression
for transfer functions between system inputs to outputs, or as a
quick and dirty method to obtain a transfer function between a
specific input and output. For the more general method, see [1,
p 434]. When reducing the system, be sure to retain those fea-
tures required for the transfer function (e.g. don’t collapse a
node if its across-variable is of interest to the transfer function).
Garbini, in the appendix, gives two main “tricks” to reduce a
system using impedances and obtain a specific transfer func-
tion: across- and through-variable dividers, and Thevenin and
Norton equivalent models.

12.2.1 Across- and through-variable dividers

These are presented in Appendix A. The strategy is to reduce a
system to one or the other model, so the transfer function can
be found using those models. Sometimes the transfer function

desired is of the form T (s) = Vi
Fs

: the elemental variable desired

is not matched with the source (across vs through or vice versa).
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This can be solved using the relevant elemental relationship (e.g.

Vi
Fs

=
1
Cis

Fi

Fs
).

12.2.2 Thevenin & Norton equivalent models

If the across- or through-variable dividers are unable to allow
the desired transfer function to be found, the source equivalent
methods will be of great help.

The idea for Thevenin models is that any linear system ex-
cited by a single source (across or through) and driving an ex-
ternal load ZL may be modeled as a single across variable source
Vs (Garbini’s Ve) connected in series with a single impedance
element Zout(s) (Garbini’s Ze).

The idea for Norton models is that any linear system excited
by a single source (across or through) and driving an external
load ZL may be modeled as a single through variable source
Fs (Garbini’s Fe) connected in parallel with a single impedance
element Zout(s) (Garbini’s Ze).

For construction of these models, see [1, p 441] and follow the
procedure. There arise some situations where the transfer func-
tion desired can make use of transforming between Thevenin
and Norton models.

12.3 Transducing elements

These can be dealt with using the following method. For trans-
formers, the effective impedance at port 1 of the impedance Z3
connected across port 2 is

Z1(s) = (TF)2Z3(s). (146)

For gyrators, the same quantity is

Z1(s) = (GY)2 1

Z3(s)
. (147)

13 Sinusoidal frequency response of linear
systems [1, p 453]

In this section we will investigate the response of a system due
to inputs of the form

u(t) = A sin(ωt+ ψ) (148)

where A is amplitude, ω is the angular frequency (ω = 2π/T ,
where T is the period), and ψ is the phase.

Here we deal only with the steady-state response, since the
transient terms of the sinusoidal response (due to ICs) die out
quickly.

We begin with the steady-state (particular) solution to an
exponential input u(t) = U(s)est,

yp(t) = Y (s)est = H(s)U(s)est, (149)

where H(s) is the transfer function and U(s) is the complex in-
put amplitude. Since we only desire sinusoidal response, s⇒ jω.
This leads to the expression for the complex output amplitude
Y (jω) as a function of a gain and the complex input amplitude:

Y (jω) = H(jω)U(jω) (150)

where H(jω) is defined as the frequency response of the system.
From the transfer function

H(jω) = H(s)|s=jω . (151)

The magnitude or gain of the frequency response is

|H(jω)| =
√

[Re(H(jω))]2 + [Im(H(jω))]2) (152)

and the phase angle of the frequency response is

φ(jω) = tan−1

(
Im(H(jω))

Re(H(jω))

)
. (153)

The steady-state solution yss(t) for a system with transfer
function H(s) (frequency response H(jω)) to a sinusoidal input
u(t) is

yss(t) = A|H(jω)| sin(ωt+ ψ + φ(jω)). (154)

This means that for a sinusoidal input, the system responds
(in steady-state) with a sinusoidal output at the same fre-
quency with amplitude scaled by |H(jω)| and phase-shifted
φ(jω). |H(jω)| is the ratio of the output amplitude to the input
amplitude, sometimes called gain of the system, as a function
of input frequency ω. Systems that respond to low frequen-
cies but attenuate high frequencies are called low-pass filters,
while systems that response to high frequencies but attenuate
low frequencies are called high-pass filters.

13.1 1st- & 2nd-order systems

13.1.1 First-order systems

First-order systems of the form

τ
dy

dt
+ y = K0u(t), (155)

where K0 is a constant, has transfer function

H(s) =
K0

τs+ 1
. (156)

The frequency response function is

H(jω) =
K0

jωτ + 1
, (157)

and its magnitude and phase are

|H(jω)| =
K0√

(ωτ)2 + 1
(158)

φ(jω) = tan−1(−ωτ). (159)

From Equation (154), the steady-state response to a sinu-
soidal input is

yss(t) = A
K0√

(ωτ)2 + 1
sin(ωt+ ψ + tan−1(−ωτ)). (160)

13.1.2 Second-order systems of the usual form

Second-order systems of the form

ÿ + 2ζωnẏ + ω2
ny = K0u(t) (161)

where K0 is a constant, has transfer function

H(s) =
K0

s2 + 2ζωns+ ω2
n

. (162)

The frequency response function is

H(jω) =
K0/ω2

n

(1− ω2

ω2
n

) + j(2ζ ω
ωn

)
, (163)

and its magnitude and phase are

|H(jω)| =
K0/ω2

n√
(1− ω2

ω2
n

)2 + (2ζ ω
ωn

)2

(164)

φ(jω) = tan−1 −2ζω/ωn

1− (ω/ωn)2
. (165)

The maximum (peak) magnitude occurs at the resonance
frequency

ωP = ωn
√

1− 2ζ2 ∀ ζ ≤
√

2/2 = .707 (166)

since for ζ ≥ .707 no peak occurs and the magnitude is mono-
tonically decreasing for increasing ω. Note that this is only valid
for systems of the form (161). It was derived from taking the
derivative of the magnitude of the frequency response function
wrt frequency, setting equal to zero, and solving for ω. The
solution varies if the transfer function is of another form, for
instance, if the transfer function has a zero. The magnitude at
this frequency is

|H(jω)| =
K0/ω2

n

2ζ
√

1− ζ2
. (167)
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13.2 Bode plots

Bode plots are magnitude and phase angle plots as functions
of input (driving) frequency ω. They are typically graphed on
decibel (dB) and degree (◦) vertical axes and logarithmic hori-
zontal axes. Decibels are found by the formula

Q = 10 log10

(
P
Pref

)
dB = 20 log10

(
A

Aref

)
dB. (168)

|H(jω)| is the ratio of the amplitude of the sinusoidal input to
the amplitude of the sinusoidal output, so in dB,

|H(jω)|dB = 20 log10|H(jω)| dB. (169)

The following table is helpful for quick conversions.

dB - power - amplitude relationships

dB Pout/Pin Aout/Ain

-40 0.0001 0.01

-30 0.001 0.03162

-20 0.01 0.1

-10 0.1 0.3162

-6 0.25 0.5

-3 0.5 0.7071

0 1 1

3 2 1.414

6 4 2

10 10 3.162

20 100 10

40 10000 100

Another common measure is the decade, which is synonymous
with the “order of magnitude” - a factor of 10.

13.2.1 Asymptotic Bode plots from transfer function

This method for hand-drawing Bode plots is best-suited when
the transfer function is known (see Section 13.2.2 when the pole-
zero plot is known).

The general method is to build a higher-order bode plot from
easier-constructed lower-order plots. The magnitude Bode-plot
characteristics of some of these are in the following table.

Asymptotic properties for magnitude Bode plot

Description
(× = pole,
◦ = zero)

Transfer function
Break
frequency
(rad/s)

High-ω slope
(dB/decade)

Const gain K – 0

× at origin 1/s – -20

◦ at origin s – 20

Real × 1/(τs+ 1) 1/τ -20

Real ◦ τs+ 1 1/τ 20

Conj ×’s
ω2
n

s2+2ζωns+ω2
n

ωn -40

Conj ◦’s s2+2ζωns+ω
2
n

ω2
n

ωn 40

The following procedure can be followed to construct the
Bode magnitude plot:

1. factor the numerator and denominator of H(s) into con-
stant, first-order, and second-order terms s.t. each term
has a corresponding entry in the above table,

2. identify the break frequency associated with each factor
(from table),

3. plot the asymptotic of each of the factors on dB-log or
log-log axes,
(a) draw horizontal line (unless there is a pole or zero at

the origin) at the constant-gain value up to the break
frequency, and

(b) draw (linear on log) line using the “high-ω” slope
(negative if pole, positive if zero)

4. graphically add the component plots (multiplication is ad-
dition in log-scale: log(ab) = log a+ log b), and

5. “round out” the corners using known values at break fre-
quencies (±3 dB for first-order sections, and dependent on
ζ for quadratic factors).

Phase plots can be constructed by using a similar method.
Here is a table for phase-plot properties.

Asymptotic properties for phase Bode plot

Description
(× = pole,
◦ = zero)

Break frequency
ωB (rad/s)

Phase @
ωB (◦)

High-ω
phase (◦)

Const gain – – 0

× at origin – – −90

◦ at origin – – 90

Real × 1/τ −45 −90

Real ◦ 1/τ 45 90

Conj ×’s ωn −90 −180

Conj ◦’s ωn 90 180

The procedure for plotting the phase is as follows (first two steps
redundant if magnitude plot is already finished):

1. factor the numerator and denominator of H(s) into con-
stant, first-order, and second-order terms s.t. each term
has a corresponding entry in the above (magnitude) table,

2. identify the break frequency associated with each factor
(from table),

3. plot each component phase plot
(a) if the component is one of the first three in the ta-

ble, draw the constant line and skip the rest of the
sub-steps

(b) plot the break frequency ωB point (see above table),
(c) if the component is a real pole or zero,

i. plot the horizontal zero-phase up to one decade
below ωB ,

ii. plot the high-frequency asymptote (see above ta-
ble) after one decade above ωb,

iii. linearly connect these two lines, drawing a line
through the “Phase @ ωB”,

(d) if the component is a conjugate pair, inspect phase
plot shapes in [1, p 476, Figure 14.15] based on ζ,
but note that the low-ω, “Phase @ ωB ,” and “High-
ω phase” will all be satisfied (see above table),

4. graphically add each component (here the phases are, in
fact, additive, and on a linear scale).

13.2.2 Bode plots from pole-zero plots

Given a factored transfer function, the poles and zeros, or just
the pole-zero plot, much can be said about the magnitude and
phase response, and a magnitude Bode plot can be quickly
sketched. If each factor in a factored frequency response func-
tion, each corresponding to a pole or zero, is considered as a
vector from the pole or zero location to the location of jω, which
is the input frequency - located on the vertical axis, then the
magnitude and phase of the frequency response function are

|H(jω)| = K
r1 · r2 · · · rm
q1 · q2 · · · qn

(170)

∠H(jω) = (φ1 + φ2 + · · ·+ φm)

− (θ1 + θ2 + · · ·+ θn) (171)

where ri = |(jω − zi)|, qi = |(jω − pi)|, K is a constant that
cannot be determined from the pole-zero plot, θi and φi are the
angles pole and zero vectors (respectively) make to the horizon-
tal.
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from the n system poles to a test point s = jw has a magnitude and an angle: 

Ijw - Pil = ja? + (w  Wi)2 

L(s - Pi) = tan-I (w - Wi) 
-ai 

as shown in Fig. 14.20a, with similar expressions for the vectors from the m zeros. 
magnitude and phase angle of the complete frequency response may then be written in 
of the magnitudes and angles of these component vectors: 

IH(jw)1 = K [1!=1 I(~w - zi)1 
[1i=1 l(jw  Pi)1 

m n 

LH(jw) = L L(jw - Zi) - L L(jw  Pi) 
i=1 i=1 

As defined in Sec. 12.6, if the vector from the pole Pi to the point s = jw has length 
and an angle (}i from the horizontal, and the vector from the zero Zi to the point jw has 
length ri and an angle ¢i, as shown in Fig. 14.20b, the value of the frequency response 
the point jw is 

IH(jw)1 = K rl ... rm 
ql" ·qn 

LH(jw) = (¢I + ... + ¢m) - «(}I + ... + (}n) 

jUi 
jUi] 

o 
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Figure 14.20: Definition of the vector quantities used in defining the frequency 
response function from the pole-zero plot. In (a) the vector from a pole (or zero) is 

defined, and in (b) the vectors from all poles and zeros in a typical system are shown. 

(J 

The graphical method can be very useful in deriving a qualitative picture of a system 
frequency response. For example, consider the sinusoidal response of a first-order system 
with a pole on the real axis at s = -I/T as shown in Fig. 14.21a and its Bode plots in 
Fig. 14.21 b. Even though the gain constant K cannot be detennined from the pole-zero plot, 

The following observations can be made from these plots:
• for a real pole:

– for low-ω, the magnitude approaches a finite value,
– as ω increases, the magnitude and phase decrease,
– for high-ω, the magnitude ⇒ 0, and phase −π/2;

• for a real zero:
– for low-ω, the magnitude approaches a finite value,
– as ω increases, the magnitude and phase increase,
– for high-ω, the magnitude ⇒ ∞, and phase π/2;

• for complex conjugate poles:
– for low-ω, the magnitude and phase approaches a fi-

nite value,
– as ω passes nearest the poles, the magnitude reaches

a maximum (resonance),
– as ω increases further, the magnitude and phase de-

crease,
– for high-ω, the magnitude ⇒ 0, and phase −2π/2 =
−π;

• for complex conjugate poles:
– for low-ω, the magnitude and phase approaches a fi-

nite value,
– as ω passes nearest the zeros, the magnitude reaches

a minimum,
– as ω increases further, the magnitude and phase in-

crease, and
– for high-ω, the magnitude⇒∞, and phase 2π/2 = π.

The following generalizations can be made.
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• If a system has more poles than zeros, as the frequency
becomes large, the magnitude tends to zero.
• If a system has more zeros than poles, as the frequency

becomes large, the magnitude tends to infinity (which can-
not happen in a physical system).
• If a system has a pair of complex conjugate poles near the

imaginary axis, a peak magnitude is seen as the frequency
approaches them. If the poles are on the imaginary axis,
the magnitude is infinite at that frequency.
• If a system has a pair of complex conjugate zeros near the

imaginary axis, a minimum (notch) magnitude is seen as
the frequency approaches them. If the poles are on the
imaginary axis, the magnitude is zero at that frequency.
• A pole at the origin (pure integrator) implies an infinite

magnitude at DC-frequency.
• A zero at the origin (pure differentiator) implies a zero

gain DC-frequency.

Constructing magnitude Bode plots
The pole-zero plot provides a good method for constructing a
magnitude Bode plot. The constant K from Equation (170)
cannot be determined from the pole-zero plot, so the Bode plot
must be scaled (shifted up or down for log-plot) appropriately.
The key idea is that the vector drawn from the origin to each
pole or zero corresponds to the break frequency (the magnitude
of the vector) and the phase angle (the angle of the vector).

Break the pole-zero plot into radial regions with boundaries
between the regions being the radial positions of the poles and
zeros. These radial positions correspond to (equal!) break fre-
quencies in the Bode magnitude plot (at this point, dash-line
in the break frequencies). Starting from the origin, move out-
ward “picking up” poles and zeros as you go. The slope of the
Bode plot in each region depends on how many poles and zeros
you have carried to that region. If you pass a pole, the slope
decreases by 20 dB; if you pass a zero, the slope increases by
20 dB. The formula for the slope in each region as a function of
the number of poles P and zeros Z between it and the origin is

slope = 20(Z − P ) dB/decade. (172)
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magnitude Bode plot without knowing the absolute gain. The method described here allows 
the magnitude plot to be sketched by inspection without drawing the individual component 
curves. The method is based on the fact that the overall magnitude curve undergoes a change 
in slope at each break frequency. 

The first step is to identify the break frequencies, either by factoring the transfer 
function or directly from the pole-zero plot. Consider a typical pole-zero plot of a linear 
system as shown in Fig. 14.23a. The break frequencies for the four first- and second-order 
blocks are all at a 'frequency equal to the radial distance of the poles or zeros from the origin 
of the s-plane, that is, Wb = Ja 2 + w2 Therefore. all break frequencies may be found 
by taking a compass and drawing an arc from each pole or zero to the positive imaginary 
axis. These break frequencies may be transferred directly to the logarithmic frequency axis 
of the Bode plot. 
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Figure 14.23: Construction of the magnitude Bode plot from the pole-zero 
diagram. (a) A typical third-order system and the definition of the break frequencies . and 

. (b) the Bode plot based on changes in slope at the break frequencies. 

Because aJJ low-frequency asymptotes are horizontal lines with a gain of 0 dB, a pole 
or zero does not contribute to the magnitude Bode plot below its break frequency. Each pole 
or zero contributes a change in the slope of the asymptotic plot of ±20 dB/decade above 
its break frequency. A complex conjugate pole or zero pair defines two coincident breaks 
of ±20 dB/decade (one from each member of the pair), giving a total change in the slope 
of ±40 dB/decade. Therefore, at any frequency w, the slope of the asymptotic magnitude 
function depends only on the number of break points at frequencies less than w, or to the 
left on the Bode plot. If there are Z break points due to zeros to the left and P break points 
due to poles, the slope of the curve at that frequency is 20(Z - P) decibels/decade. 

Any poles or zeros at the origin cannot be plotted on the Bode plot because they are 
effectively to the left of all finite break frequencies . However, they define the initial slope. If 
an arbitrary starting frequency and an assumed gain (for example, 0 dB) at that frequency 
are chosen , the shape of the magnitude plot may be easily constructed by noting the initial 
slope and constructing the curve from straight-line segments that change in slope by units 
of ±20 dB/decade at the break points. The arbitrary choice of the reference gain results in 
a vertical displacement of the curve. 

14 Frequency domain methods [1, p 500]

In the section we develop methods of determining the system re-
sponse to more general input functions. We will describe inputs
as sums (or integrals) of many sinusoidal inputs and develop,
based on the principle of superposition (sum of inputs gives sum
of individual outputs), methods for finding system responses.

14.1 Fourier analysis of periodic waveforms
(Fourier Series)

A periodic function is one that satisfies f(t) = f(t+ nT ) ∀n =
±1,±2, . . . where T is the period of the function. The funda-
mental frequency ω0 is defined as ω0 ≡ 2π/T . Waveforms are
called harmonics of each other if their fundamental frequencies
(or periods) are an integer ratio (meaning the greater divided
by the smaller equals an integer).

The Fourier series is a description of a periodic function as
a weighted sum of harmonic sinusoidal components. The nth
harmonic component of the series can be written

fn(t) = an cos(nω0t) + bn sin(nω0t) (173)

= An sin(nω0t+ φn) (174)

where the conversions between each representation are

an = An sin φn and bn = An cos φn (175)

An =
√
a2
n + b2n and φn = tan−1 an

bn
. (176)

The Fourier series representation of a function f(t) subject
to certain conditions [1, p 509] is

f(t) =
1

2
a0 +

∞∑
n=1

[an cos(nω0t) + bn sin(nω0t)] (177)

=
1

2
a0 +

∞∑
n=1

An sin(nω0t+ φn). (178)

A third, equivalent, complex representation is

f(t) =
∞∑

n=−∞
Fne

jnω0t (179)

where

Fn =
1

2
(an − jbn) (180)

F−n =
1

2
(an + jbn). (181)

So we have a representation of any periodic function as a
weighted sum of sinusoids. To determine the weights (coeffi-
cients), the following formulas can be used. For the real repre-
sentations,

an =
2

T

∫ t1+T

t1

f(t) cos(nω0t)dt, (182)

bn =
2

T

∫ t1+T

t1

f(t) sin(nω0t)dt, (183)

and a0 can be computed separately from Equation (182). For
the complex representation,

Fn =
1

T

∫ t1+T

t1

f(t)e−jnω0tdt, (184)

F−n is the complex conjugate of Fn, and F0 can be computed
separately (with n = 0) from (184).

14.1.1 Properties of the Fourier series

See [1, p 509] for more, but a few properties are listed here.

• Linearity If the Fourier series components of two peri-
odic functions g(t) and h(t) with identical periods T are
Gn and Hn, then, if a new function f(t) is defined as a
linear combination of g(t) and h(t),

f(t) = ag(t) + bh(t), (185)

the Fourier components of f(t) are

Fn = aGn + bHn. (186)

• Even and Odd Functions If the function is even, then
all bn = 0. If a function is odd, then all an = 0. Note that
if a function would be odd if it was shifted up or down by
some DC value, assume an = 0, but shift the result by the
same shift (see next property).

• Interpretation of the zero-frequency (DC) term a0
or F0 This term is simply the average value of the func-
tion over a period. If a function is shifted up or down,
this is the only term in the series that is effected, and it
is shifted by the same average or DC value.

14.1.2 Line spectra

For a waveform decomposed into Fourier components, it is nat-
ural to describe the waveform as a line spectrum. This is most
commonly represented as a magnitude and phase plot versus
frequency, using (176) or simply the absolute values and phases
of the complex coefficients |Fn| and ∠Fn. For the complex case,
sometimes the “magnitude” plot is of the coefficient F ′n in front
of the exponential of Fn = F ′ne

φn where |Fn| = |F ′n|.
The complex representation gives rise to a two-sided spec-

trum, meaning that negative n gives rise to negative frequency
components. The real representation gives a one-sided spec-
trum, for which only positive n and frequencies arise. For con-
version between one- and two-sided spectra, use (180) and (181).
To convert a two-sided magnitude line spectrum to a one one-
sided, the plot is merely “folded” over and doubles its posi-
tive half (since it is symmetric about the magnitude axis) or
An = 2|Fn|.

14.2 Response of linear systems to periodic
inputs

Given a system with frequency response H(jω) and an input
u(t) of the form of Equations (177) or (178), the output of each
component of the input is

yn(t) = |H(jnω0)|An sin[nω0t+ φn + ∠H(Jnω0)]. (187)

By the principle of superposition,

y(t) =
∞∑
n=0

yn(t). (188)

Given the same situation but with the input in the form of
Equation (179),

yn(t) = H(jnω0)Fne
jnω0t (189)
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and, once again using superposition,

y(t) =

∞∑
n=−∞

yn(t). (190)

14.3 Fourier analysis of transient waveforms
(Fourier Transforms)

Some aperiodic (transient) functions, which do not have Fourier
series representations, can be described by a Fourier Transform
(also called the spectrum). These functions must be limited in
time, occur only once, and decay to zero as time becomes large.
A Fourier series of a periodic extension of the function is used in
the development of the periodic extension, then the interval be-
tween occurrences of the function taken to infinity, which gives
the Fourier transform.

The Fourier transform is defined by the following Fourier
transform pair :

F (jω) =

∫ ∞
−∞

f(t)e−jωtdt (191)

f(t) =
1

2π

∫ ∞
−∞

F (jω)ejωtdω (192)

and can also be written in terms of the Fourier transform oper-
ator F ,

F (jω) = F{f(t)} (193)

f(t) = F−1{F (jω)}. (194)

See [1, pp 528-31] for the properties of the Fourier trans-
form, including existence, linearity, even and odd functions,
time-shifting, waveform energy, and Fourier transforms of the
derivative of a function.

14.4 Fourier transform-based properties of
linear systems

14.4.1 Response of linear systems to aperiodic inputs

The output spectrum is the input spectrum scaled by the fre-
quency response function:

Y (jω) = H(jω)U(jω). (195)

This leads to the following procedure for finding the output of
a system due to an aperiodic input:

1. compute the Fourier transform of the input

U(jω) = F{u(t)},

2. form the output spectrum as the product

Y (jω) = H(jω)U(jω), and

3. compute the inverse Fourier transform

y(t) = F−1{Y (jω)}.

14.4.2 Relationship between H(jω) and h(t)

The Fourier transform (spectrum) of the impulse response h(t)
of a system is the frequency response function H(jω):

H(jω) = F{h(t)} (196)

h(t) = F−1{H(jω)}. (197)

This completely characterizes the system in the frequency or
time domain, respectively.

This has important implications for measuring a system fre-
quency response function H(jω). We can provide an impulse
input (strike it with a hammer at the input) and measure y(t)
at the output, then take the Fourier transform to obtain H(jω)
(or transfer function), with which we can predict the output of
a function to a variety of inputs.

14.4.3 Convolution

Convolution in the time domain (see Section 8.4), is simply mul-
tiplication in the frequency domain:

F{f(t) ? g(t)} = F (jω)G(jω). (198)

Conversely, convolution in the frequency domain, is a scaled
multiplication in the time domain:

F−1{F (jω) ? G(jω)} = 2πf(t)g(t). (199)

14.4.4 Frequency response of interconnected systems

If two linear systems are connected in cascade (series), and pro-
vided the connection does not effect the output of the first sys-
tem, the overall frequency response is

H(jω) = H1(jω)H2(jω). (200)

If two linear systems are connected in parallel (share the
input and their outputs sum), the overall frequency response is

H(jω) = H1(jω) +H2(jω). (201)

14.5 Laplace Transforms

Many functions do not have Fourier transforms, including the
unit step and ramp functions. The Laplace transform is a gen-
eralized form of the Fourier transform that exists for a much
broader range of functions.

The Laplace transform multiplies by a weighting function
w(t) = e−σt to drive the integral to zero. Now the one-side
transform (assuming f(t) = 0 ∀t < 0) pair is

F (s) =

∫ ∞
0

f(t)e−stdt (202)

f(t) =
1

2πj

∫ σ+j∞

σ−j∞
F (s)estds (203)

where s = σ + jω. The region of convergence (ROC) of the in-
tegral in the s-plane is an important quantity for each Laplace

transform. If the imaginary axis is in the ROC, the Fourier
transform exists for that function. In operator form

L{f(t)} = F (s) (204)

L−1{F (s)} = f(t). (205)

See [?, p 545] or Appendix B for common Laplace transforms,
which are typically used in practice.

15 Approaches to problems

15.1 Specific mode excitation

These are typically stated in one of the following ways

1. “If there is no input and the initial condition vector is

x(0) =
[
3 1 −6

]
, will the state vector approach zero

as time gets large?”

2. “If there is no input, find an initial condition vector such
that the state vector approaches zero as time gets large.”

3. “With initial condition vector x(0) =
[
3 1 −6

]
(or

zero), choose a B matrix such that (or with a given B,
will) the state vector approach zero as time gets large.”

4. There may be some variation of these with outputs instead
of states.

5. There may be some variation of these with states or out-
put going to zero in a finite time.

15.1.1 Approaches

There are four main ideas at work here: modal decomposition,
stability, controllability, and observability. The main approach
here follows.

1. Find the eigenvalues of A. Typically at least one is un-
stable for these problems and they are distinct.

2. Find the eigenvectors of A.

3. Depending on what is required, fully or partially construct
the modal decomposition system with modal state variable
q.

4. An initial state in the modal state variable q(0) will not
excite the unstable mode if it has no component in the
direction of the unstable mode, since the homogeneous
response can be written as (103),

xh(t) = MeΛtα

= α1m1e
λ1t + α2m2e

λ2t + ...+ αnmne
λnt,

and the initial conditions being applied determine the val-
ues of αi, and αi = 0 will correspond to an eigenvector
that has no component in the initial condition:

x(0) = α1m1 + α2m2 + ...+ αnmn.

The best way to think about it is this: we want αj cor-
responding to the unstable (j-th) eigenvector to be zero.

14.3 Fourier analysis of transient waveforms (Fourier Transforms) system dynamics page 19 of 26



Let’s simply solve for x(0) in terms of α, make the j-
component of α, the see what x(0) satisfies the equation.
We have

x(0) = MeΛ0α

= MIα

= Mα

= α1m1 + α2m2 + ...+ αnmn

So we choose α as anything with αj = 0 (any and all
unstable modes), then multiply by M to find x(0). Some-
thing interesting to note here is that

α = M−1x(0)

= M−1Mq(0)

= q(0)

This shows the connection between the original and de-
coupled systems. The decoupled system has the identity
matrix as its eigenvectors (and are therefore orthogonal)

(206)

Note that the eigenvectors are not necessarily orthogonal
to each other (only if A = Aᵀ).

5. Controllability and observability criteria (especially 1) are
useful when there is a nonzero input or the output is of
interest. Specifically, in the modal decomposition state
model we can easily determine if a mode is being excited
by the input and if it is being observed in the output.
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A Impendance-based modeling
Notes on Generalized Impedances by J. L. Garbini

Generalized impedances are an extension of the concept of electrical impedances to systems of other domains.
The table below lists the corresponding driving-point impedance definitions for five different energy modalities.

Mechanical
Translational

Mechanical
Rotational

Electrical Fluid Thermal

Across Variable v, velocity ω, angular
velocity

v, voltage p, pressure T, temperature

Through Variable f, force T, torque i, current q, volumetric
flow

q, heat flow rate

Impedance Z(s)
Admittance

    
Y s

Z s
( )

( )
= 1     

Z s
V s
F s

( )
( )
( )

=
    
Z s

s
T s

( )
( )
( )

= Ω

    
Z s

V s
I s

( )
( )
( )

=
    
Z s

P s
Q s

( )
( )
( )

=
    
Z s

T s
Q s

( )
( )
( )

=

A-Type
mass, M:

    

1
Ms

inertia, J:

    

1
Js

capacitor, C

    

1
Cs

fluid capacitor, C

    

1
Cs

thermal capacitor, C

    

1
Cs

D-Type
damper, B

    

1
B

r. damper, B

    

1
B

resistor, R
  R

fluid resistor, R
  R

thermal resistor, R
  R

Im
p

ed
an

ce
   
Z

(s
)

T-Type
spring, K

  

s
K

r. spring,   Kr

  

s
Kr

inductor, L

  Ls

fluid inductor, L

  Ls
Ñ

Series and parallel combinations of impedances and admittances can be combined.  In the following V and F
represent the across and through variables respectively of any physical domain.

Series Combination Parallel Combination

Elements sharing a
common through variable
are in series.

The impedance of elements
connected in series is the
sum of the individual
impedances.

Z1 Z2

Z

    Z Z Z1 1 2= +

Elements sharing a common
across variable are in parallel.

The admittance of elements
connected in parallel is the
sum of the individual
admittances.

Y1 Y2 Y1+Y2

    

Y Y Y

Z
Y

Z Z

Z Z
Z Z

= +

= =
+

=
+

1 2

1 2

1 2

1 2

1 1
1 1

Simple transfer functions can be determined from impedance/admittance properties.

Across Variable Divider Through Variable Divider

The complex amplitude of
the across variable across a
set of elements in series is
divided among the
elements in proportion
their impedances.

Z1

Z2

Z3

V2Vs

    
T s

V s
V s

Z
Z Z Zs

( )
( )
( )

= =
+ +

2 2

1 2 3

The complex amplitude of
the through variable through
a set of elements in parallel is
divided among the elements
in proportion their
admittances.

Y1 F3Fs Y2 Y3

    
T s

F s
F s

Y
Y Y Ys

( )
( )
( )

= =
+ +

2 2

1 2 3
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Thevenin and Norton equivalent networks are useful deriving transfer functions and in modeling systems that
have a defined load impedance.

TheveninÕs Theorem
A linear two-terminal network is equivalent to an
across variable source  Ve  in series with an equivalent
impedance   Ze , where

  Ze  = the impedance of the network with all sources set
equal to zero, and

  Ve  = an across variable source equal to the across
variable that would appear across the open circuit
terminals of the network.

Ze
Ve

Linear
Network

Linear
Network

Ve

NortonÕs Theorem
A linear two-terminal network is equivalent to a
through variable source  Fe  in parallel with an equivalent
impedance   Ze , where

  Ze  = the impedance of the network with all sources set
equal to zero, and

  Fe  = a through variable source equal to the through
variable that would flow through the short
circuited terminals of the network.

Ze

Linear
Network

Linear
Network

Fe Fe

Source Transformations

Since any linear two-terminal networks can be
represented by either a Thevenin equivalent or a
Norton equivalent, the two representations must be
equivalent to each other.

Ze
Ve

ZeFe

  
F

V
Ze
e

e
=

Measurement Loading

Across Variable Measurements

Suppose that we wish to measure an across variable at the output of
a Òdevice under testÓ with a Òmeasurement instrument.Ó  The
measurement instrument is attached across the terminals of interest.
Of course we desired that the measured variable be undisturbed by
the connection of the instrument.  That is, we want   Vm  to be as
nearly equal to   Vo  as possible.  We say that the measurement
instrument should not ÒloadÓ the device under test.

The output impedance of the device under test is the equivalent
impedance defined by its Thevenin model   Z Zo e=  for the unloaded
output terminals.

Similarly, the input impedance   Ziof the measurement instrument is
the Thevenin equivalent impedance defined for its input terminals.

Ze

Zi

Ve

device
under
test

Zi

Vo

Vm

measurement
instrument

Zi
device
under
test

measurement
instrument

F

Connecting the Thevenin model for the device under test to the
input impedance of the measurement instrument we have the
network at the right.

The Thevenin equivalent across variable source is by definition
equal to   Vo , the value that we wish to measure.  Applying the across

variable divider rule:  
    

V s
V s Z Z
m

o o i

( )
( )

=
+
1

1
.

Since we desire that the ratio approach unity, the input impedance
of the measurement instrument must be large in comparison with
the output impedance of the device under test:    Z Zi o>>

Zo
Ve Vm Zi

Through Variable Measurements

Alternately, suppose that we wish to measure a through variable in
a device under test with a measurement instrument.  In this case, the
variable of interest flows through the measurement instrument.  We
desired that the measured variable be undisturbed by the connection
of the instrument.  That is, we want   Fm  to be as nearly equal to   Fo  as
possible.

The output admittance of the device under test is the equivalent
admittance defined by its NortonÕs  model     Y Zo e= 1  for the
unloaded output terminals.

Similarly, the input admittance   Yi of the measurement instrument is
the Norton equivalent admittance defined for its input terminals.

Yi
device
under
test

Yi

Fo

Fm

measurement
instrument

Yi
device
under
test

measurement
instrument

YoFe

Connecting the Norton model for the device under test to the input
admittance of the measurement instrument we have the network at
the right.

The Norton equivalent through variable source is by definition equal
to   Fo , the value that we wish to measure.  Applying the through

variable divider rule:  
    

F s
F s Y Y
m

o o i

( )
( )

=
+
1

1
.

Since we desire that the ratio approach unity, the input admittance
of the measurement instrument must be large in comparison with
the output admittance of the device under test:    Y Yi o>>

YiYoFe Fm
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B Laplace transforms

B.1 Laplace transform properties
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B.2 Laplace transform pairs
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C Fourier transforms

C.1 Fourier transform properties

C.2 Fourier transform pairs
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D Periodic input response
    

ω

ω

ω

ω

ω

ω

Line Spectrum 
of 
Input

Line Spectrum 
of 
Output

Frequency
Response
of 
System

Input
Magnitude,

An

Input
Phase,

φn

System
Magnitude,

|H(jω)|

System
Phase,

∠H(jω)

Output
Magnitude,

An|H(jnω0)|

Output
Phase,

φn  +  ∠H(jnω0)

System Response to Periodic Inputs
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0
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