Two ways to re-write a complex fraction as a phasor

Way 1.

$$
\begin{aligned}
\frac{a+j b}{c+j d} & =\frac{c-j d}{c-j d} \cdot \frac{a+j b}{c+j d}=\frac{c a+d b+j(c b-d a)}{c^{2}+d^{2}} \\
& =\frac{c a+d b}{\frac{c^{2}+d^{2}}{\operatorname{def} \sigma}+j \frac{c b-d a}{c^{2}+d^{2}}}=\sigma+j \omega \\
& =\sqrt{\sigma^{2}+\omega^{2}} e^{j \phi} \quad \text { where } \phi=\operatorname{atan} \frac{\omega}{\sigma} .
\end{aligned}
$$

Way 2.

$$
\begin{aligned}
\frac{a+j b}{c+j d} & =\frac{\sqrt{a^{2}+b^{2}} e^{j \phi_{1}}}{\sqrt{c^{2}+d^{2}} e^{j \phi_{2}}} \quad \text { where } \begin{array}{l}
\phi_{1}=a \tan \frac{b}{a} \\
\phi_{2}=a \tan \frac{d}{c} \\
\\
\end{array}=\frac{\sqrt{a^{2}+b^{2}}}{\sqrt{c^{2}+d^{2}}} e^{\left(\phi_{1}-\phi_{2}\right)}
\end{aligned}
$$

