
Robotics

programming and simulation

Rico A. R. Picone
Department of Mechanical Engineering

Saint Martin’s University

06 June 2020

Copyright © 2020 Rico A. R. Picone All Rights Reserved

Contents

I Introduction to Robotics 5

01 Introduction 7
01.01 Defining robots . 8
01.02 Robot mechanicality . 11
01.03 Robot sensitivity . 15
01.04 Robot potency . 20
01.05 Robot intelligence . 25
01.06 Robot artificiality and artificial life 30
01.07 Robot autonomy and human-robot collaboration 34
01.08 Exercises for Chapter 01 . 36

02 Embodiment 39

03 Robot mechanics 41

04 Robot control architectures 43
04.01 Deliberative control . 47
04.02 Reactive control . 48
04.03 Hybrid control . 53
04.04 Behavior-based control . 54
04.05 Exercises for Chapter 04 . 55

II Introduction to ROS 57

05 Introducing ROS 59

Contents Contents

05.01 ROS methodology . 60
Resource R1 Setting up the development environment 62

06 ROS basics 67
06.01 ROS graphs . 68
06.02 ROS packages . 70
06.03 Running and launching ROS nodes 75
06.04 Coordinate frame transformations 78

07 ROS topics 83
Resource R2 Getting the textbook code 84
Resource R3 Installing and configuring git 85
07.01 Publishing to topics . 88
07.02 Subscribing to topics . 92
07.03 Custom messages . 95
07.04 Other considerations . 100

08 ROS services 103
08.01 Introducing ROS services . 104
08.02 Serving and calling a ROS service 108

09 ROS actions 111
09.01 Introducing ROS actions . 112
09.02 Serving and calling a ROS action 115

III Open-loop control with ROS 123

IV Closed-loop control with ROS 125

V Control architectures with ROS 127

10 Bibliography 131

3 06 June 2020, 18:32:55 00.00 3 3

Part I

Introduction to Robotics

01

Introduction

Chapter 01 Introduction Lecture 01.01 Defining robots

Lecture 01.01 Defining robots

What is a robot? Due to the wide variety of existing robots, it can be
challenging to identify the gist of the term, but here are some I claim are
essential:

mechanicality A robot has a mechanical presence in an environment.mechanical
presence

environment
sensitivity A robot can partially sense its environment.

sensing
potency A robot can act on its environment.

acting
intelligence A robot can act intelligently.

intelligence
artificiality A robot is designed by humans.1

autonomy A robot is autonomous, acting at least partially without direct
autonomous

human intervention.

These are each necessary conditions for a device to be a robot. However,
I claim they collectively are sufficient conditions. In other words, a device
must have all these qualities to be a robot, and if it is missing any, it is not
a robot. Although this definition of a robot may be flawed, or may change
in the future, it gives us a useful device for discerning if a given device is
a robot or not. Furthermore, it allows us to determine which qualities the
device would need to have to be considered a robot.

Example 01.01-1 Is it a robot?

Classify each of the following as robot or not-robot. If it is not a robot,
list the missing qualities. Comment on ambiguities.

a. A Roomba vacuum cleaner.
b. A desktop computer.
c. A home heating/cooling system.
d. A toilet tank.
e. A car.
f. A cell phone.
g. A simulation of a robot.
h. A 3D printer.

1Or, at least, if it was designed by a robot, which was designed by a robot, etc.—the
original robot must have been designed by a human.

8 06 June 2020, 18:32:55 01.01 3 1

Chapter 01 Introduction Lecture 01.01 Defining robots

We will explore the meaning of each of the qualities of a robot in the
following lectures. For now, let’s pause a moment to consider the “why” of

9 06 June 2020, 18:32:55 01.01 3 2

Chapter 01 Introduction Lecture 01.01 Defining robots

robotics.

01.01.1 Why robots

Why do we make robots? Reasons include:

robots are cool One motivating factor seems to be the awe we experience
when creating something that appears life-like. In fact, creating
artificial life has been one of the explicit goals of some roboticists.artificial life

Other roboticists have been inspired by (biological) life to create more
effective robots; this field is called biomimicry.biomimicry

biology is cool A related reason to robot is that while we’re creating
artificial life and biomimetic robots, we frequently “reverse engineer”
biological life, which yields a deeper grokking of biology. We can
develop robots in service of biology.

robots help make things we like Robots help manufacture cars, airplanes,
food, computers, cell phones, and many other things we like.

robots do dangerous work Instead of humans doing certain dangerous
work, like cleaning up a toxic chemical spill, robots can take our
places.

robots do boring work Especially in manufacturing, but also in household
chores, robots can replace humans in work that is repetitive and
boring. This has the potential to free up human time for activity we
find more meaningful.

robots can do precise work Robot-assisted surgery, for instance, allows a
human surgeon to guide a robot through a delicate procedure that
requires mechanical precision beyond that of human capability.

we like money Robots give us economic advantages, which give us money.
Under our estrangement in capitalism, we fetishize money not for its
exchange value, but for itself.

We must address something here: despite its advantages, does not robot
labor necessarily lead to the loss of human jobs and the further concentrationloss of human jobs

concentration of
wealth

of wealth? Yes and no. Yes, robot labor has in fact reduced human jobs
and concentrated wealth, and it will continue to do so under the currect
world economic system (capitalism). No, this loss of human jobs is not
necessary. Under a different economic system, robot labor could have a
positive impact on human being.

10 06 June 2020, 18:32:55 01.01 3 3

Chapter 01 Introduction Lecture 01.02 Robot mechanicality

Lecture 01.02 Robot mechanicality

For a device to be considered a robot, it must have a mechanical presence
in an environment. One immediate conclusion from this is that a simulation simulation

is not a robot. This does not mean we cannot simulate robots. In fact, we
must simulate a robot to design one of any value, which is part of why we
spend several chapters on just that, later in this text.

So what does it mean that a simulation is not a robot? There are two
points here being emphasized.

1. Reality is much more complicated than can be simulated, and there-
fore even good robot simulations cannot account for everything. Re-
ality’s tough, kid!

2. Simulations of robots are great, but they can do no mechanical work.

Or, put simply: a simulation doth not a robot make.
Another implication of the mechanicality of a robot is that it has space space

and therefore matter and form. What is the stuff (matter) of a robot? Most matter
formrobots are made of the usual materials found in machines: metals, plastics,

rubbers, and ceramics. And, of course, silocon. The form one takes depends
on its function. A robot that must change its location requires a means of
locomotion. One that must manipulate objects in the world must change its locomotion

own orientation relative to the world. orientation

These last two are more than simple examples. They divide the
two primary types of robots: mobile robots and manipulation robots. The mobile robots

manipulation
robots

paradigmatic case of the former is the self-driving car and of the latter is

self-driving car
the manufacturing robot arm. There’s no reason a self-driving car can’t have

robot arm
a robot arm (can’t be both a mobile and a manipulation robot), but that’s
just showing off.

(a) self-driving car (b) robot arm

Figure 01.1: examples of two types of robot, (a) mobile and (b) manipulation. (PR)

11 06 June 2020, 18:32:55 01.02 3 1

Chapter 01 Introduction Lecture 01.02 Robot mechanicality

01.02.1 Locomotion

Mobile robots must do something basic to animal life: move about in
an environment. Moving about, or locomotion, is a fascinating topic withlocomotion

novelty everywhere. Something that makes it challenging is that it depends
on both the robot and its environment. For instance, a robot that locomotes
with wheels might not be effective at navigating the terrain of a rocky
hillside, and a lake even less-so.

Locomotion, then is a robot-environment problem. Some types of
environments commonly considered are: on-ground (i.e. terrestrial), under-
ground (i.e. fossorial), in-liquid (e.g. aqueous), in-gas (e.g. aerial), and
space. Most robots effectively move about in only one of these. Usually,
there is enough variation in each type of environment (e.g. calm versus
stormy air) to render robots effective in just a subset of the types of
environment listed above.

Examples of methods of locomotion include:locomotion
methods • rolling • walking • jumping • stick-slipping • slithering • undulating

• jet-propelling • rotary-propelling • flapping • gliding • soaring • swim-
ming • ballooning.
Examples of robotic locomotion devices include:locomotion devices

• wheels • tracks • legs • arms • tails • rockets • propellers • sails • wings
• fins • magnets • cilia.

Locomotion is one of the fields of robotics that relies most heavily on
biomimicry. Animals have developed incredible and unique methods ofbiomimicry

locomotion, and the study of them has been a gold mine for robotics.
It is worth considering here a three-fold distinction made among

actuators, effectors, and behaviors. Consider the aerial robot of Figure 01.2actuators
effectors

behaviors
that flies by flapping its wings. The motor actuates the wings (effectors)
which produces the behavior of flapping or flying.

This brings us to another important consideration in mobile robotics,
navigation. This involves several of the qualities of a robot we’ll consider innavigation

the text, but the mechanical facet of navigation is that of describing spatial
location and orientation through time, and the forces involved. We’ll returnlocation

orientation to these considerations, which constitute the study of mechanics, at the end
mechanics of this lecture.

01.02.2 Manipulation

Manipulation robots move around objects in the world. Although it is not
a requirement, most of the time they are themselves stationary, attached to

12 06 June 2020, 18:32:55 01.02 3 2

Chapter 01 Introduction Lecture 01.02 Robot mechanicality

(a) actuator: motor (b) effector: wings (c) behavior: flapping or flying

Figure 01.2: example of how actuators, effectors, and behaviors are related. (PR)

something relatively fixed. This helps the robot move things by providing
“somewhere to stand,” as it were.

Manipulation robots also use actuators, effectors, and exhibit behaviors.
The behavior of grasping is especially important for manipulation robots: by grasping

grasping an object (typically with an effector called a “gripper”), it becomes
rigidly attached to the effector, the position and orientation of which is
presumably known to the robot, and the robot can then manipulate the
object by changing its own position and orientation.

It’s hard to think a manipulation robot without an arm, a fact that jives
with a survey of primates, animals known for cognition and an ability to
manipulate tools. This does not mean there aren’t superior ways, but that
arms are, dare I say, close at hand to a human designer.

Let’s consider another way of understanding the advantages of an arm
for a manipulation robot. The concept of degrees of freedom (DOF) will DOF

help us here. Later we will consider the world’s three-dimensional space
in greater detail, but for now consider that an object in this space can
potentially translate in three independent directions and rotate about three translate

rotateindependent axes. Speaking a somewhat simplified mode, we can say that
a robot has a degree of freedom for each independent axis along with it can
translate and about which it can rotate. Returning, then, to the arm, we
see it has several joints that allow it to increase its DOF. The jointedness of joints

arms are the key to their excellence in manipulation: the more degrees of
freedom it has to move, the more complex can its movements be.

There are systematic ways of classifying joints and arms in terms of
DOF, which we will later consider. For now, we simply want to understand
the motivation of going into a detailed analysis. The goal of analyzing joints
and arms is to describe an arm’s position and orientation, how to make it

13 06 June 2020, 18:32:55 01.02 3 3

Chapter 01 Introduction Lecture 01.02 Robot mechanicality

move from one to another, and understanding the forces there-involved. As
in the conclusion of the preceding section on locomotion, we have found
ourselves concerned with matters of mechanics.mechanics

01.02.3 Mechanics

Mechanics is the study of the motion of matter and the causes and effects
thereof. We call the cause of motion force, which is typically understoodforce

to potentially produce the motion of matter. As mechanical engineers, we
are interested in several sub-fields of mechanics, including fluid mechanics,
solid mechanics, and rigid-body mechanics. Most of these specialized fields
of study are focused on the motion and forces that cause it in specific types
of material.

It is convenient to differentiate between two primary considerations
in mechanics: kinematics, which mathematically describes the motion ofkinematics

matter and kinetics, which mathematically describes the forces that causekinetics

motion.
A famously challenging aspect of mechanics in robotics is called inverseinverse kinematics

kinematics, which is the study of how to “back out” the positions and ori-
entations of a robot’s parts that yield some desirable overall configuration.
The quintessential example here is a robot arm: if we want the gripper to
be located in a certain position and orientation, where should each of the
individual joints be?

There are frequently multiple solutions for a given gripper configuration.
This problem is exacerbated by the fact that frequently there are additional
constraints on variables, yielding a system of equations and inequalities.
Even worse, these equations are usually nonlinear. Good analytic and
numerical techniques for inverse kinematics have been developed, and we
will consider some later in the text.

14 06 June 2020, 18:32:55 01.02 3 4

Chapter 01 Introduction Lecture 01.03 Robot sensitivity

Lecture 01.03 Robot sensitivity

A necessary part of a robot’s intelligence is its ability to sense its environ-
ment. The old joke that

to a hammer
everything looks like a nail

is apropos and pairs well with the gibe

dummer than a bag of hammers

to suggest that intelligence requires a sensitivity utterly lacking in a
hammer, which, of course, makes a poor robot. But what does it mean to
be sensitive? Fundamentally, it involves an interaction between a robot and
itself or its environment. This interaction is called perception or measurement, perception

measurementwhich is another fascinating field of study. This is not the place to delve into
the theory of measurement, but I do highly recommend doing so at some
point.

01.03.1 Measurement and perception

So a robot measures itself (proprioception) and its environment proprioception

(exteroception). Clearly, for intelligent behavior in an environment, it must exteroception

act in accordance with this measurement. In Lecture 01.05 we will consider
the details of acting in accordance with a measurement, but for now, we
can just acknowledge that it must be so.

What about itself and its environment does a robot measure? Given the
mechanicality discussed in the preceding lecture, it certainly has to measure
aspects of space and time: length, position, duration, velocity, acceleration,
force, torque, etc. But additional quantities will be important in many
applications: voltage, current, pressure, flowrate, temperature, heat, sound,
light, etc.

How does a robot measure? Consider Figure 01.3. The device at the
point of measurement is called a sensor. A sensor output is almost always sensor

a electronic signal: a low-power, information-bearing voltage through time. signal

A sensor is frequently supported by electronics that provide power to the
sensor, amplify the signal, or filter the signal. The output signal of the
support electronics is usually connected to more electronics or a computing
device that decides what to do with the measurement.

Measurements are never perfectly accurate; in fact, it is a fundamental
quality of measurement that

15 06 June 2020, 18:32:55 01.03 3 1

Chapter 01 Introduction Lecture 01.03 Robot sensitivity

sensor sensor support
electronics

decision-making
device

measurand signal better signal

Figure 01.3: diagram of a measurement.

every measurement affects the measurand.

That is, measuring changes the state of the thing measured. And beyond
this fundamental limit, virtually all measurements include thermal noise athermal noise

random signal that is introduced through the microscopic motion of matter
at nonzero temperature.

01.03.2 Sensors

A sensor, then, is a type of energy transducer, converting one form oftransducer

energy into another. Since the output energy domain is normally electronic,
sensors are electro-mechanical/photo/thermo/etc. transducers. This is one
reason there has been such interest in materials and processes that exhibit
this type of transduction. For instance, piezo-electric materials convert
mechanical stress into a flow of charge (current). Research into transducers
like this have been combined with nanotechnology to build micro-electro-nanotechnology

MEMS mechanical systems (MEMS) sensors that fit on a microchip.

01.03.2.1 Types of sensors

Sensors that measure quantities related to the robot’s own state are called
proprioceptive. Those that measure quantities related to its environment areproprioceptive

called exteroceptive.exteroceptive
passive Passive sensors measure by means of a detector alone. Conversely, active
detector

active
sensors use an emitter with a detector.

emitter
A simple sensor is one that provides a signal that requires relatively little

simple post-processing by the sensor support circuitry or decision-making device.
Examples of simple sensors include the following.

Switches are sensors that have only two states, typically instantiated as a
circuit with contacts that close or break the circuit.

Pressure or force sensors are touch sensors that are sensitive to pressure
on or force through the sensor by piezoelectric transduction or
resistance-based strain gauge.

Photocells are electronically resistive sensors, the resistance of which
varies with light exposure; these are typically slow.

16 06 June 2020, 18:32:55 01.03 3 2

Chapter 01 Introduction Lecture 01.03 Robot sensitivity

Polarizing filters polarize light such that the light not parallel to the polar-
izing plane is filtered.

Reflective optosensors are sensors that detect light from an emitter (usually
an LED) that is collected by a photodiode or phototransistor. These are
much faster detectors than photocells. There are two types.

Reflectance sensors require the light to reflect off an object and
return to the detector.

Break beam sensors have their emitter and detector pointed at one
another such that an object may interfere with the beam.

Shaft encoders encoders, are used to measure the angular position of a
shaft. These are typically optical and quadrature encoders that also
indicate the direction of rotation. Basically, an emitter bounces two
lasers off a spinning wheel with stripes offset 90 degrees from each
other.

Potentiometers (i.e. “pots” or “rheostats”) are variable resistors. They often
have a knob on them, the angular positions of which correspond to
varying electronic resistance.

Example 01.03-1 a human body’s sensors

Thinking about the human body as a very advanced robot can help
us better design robots. Identify which of the above types of sensors
one could say, by analogy, a human typically has.

For actionable information from a complex sensor, more support and complex

potentially computation is required than for simple sensors. The following
are important types.

Gyroscopes and accelerometers can be used to detect the motion and
especially the orientation of a robot. Gyroscopes used to be built
as macroscopic flywheels, the angular momentum of which would
maintain its orientation when mounted in gimbals. Today, MEMS
mimic this behavior so that gyroscopes can be inexpensively and
conveniently placed on a printed circuit board (PCB).

Ultrasound (i.e. “sonar”) sensors allow us to use echolocation in robotics.
Sonars emit a chirp and measure the time-of-flight for the chirp to

17 06 June 2020, 18:32:55 01.03 3 3

Chapter 01 Introduction Lecture 01.03 Robot sensitivity

Figure 01.4: a sonar emitter (TX) transmitting a sound wave that reflects of an object and
is detected by a receiver (RX). (PR)

return. It’s great. Specular reflection is the reflection from the surfacespecular reflection

of an object being detected by sonar. Smooth surfaces are hard to
detect because the waves can be completely reflected away from the
detector. Rough surfaces are better. More sensors (in configurations
called phased arrays) improve accuracy of sonar systems. For an
illustration of sonar, see Figure 01.4.

Lasers emit coherent beams of light, some visible, others not. Laser
sensors can use the same time-of-flight principles as sonar to measure
distance, but must use phase-shift information for short distances
(because light’s pretty fast). Advantages of lasers are that they are
faster than sonar, have good resolution, and have fewer specularity
issues. Disadvantages include that they are much more expensive
than sonar, bulky, and provide limited information (small beams!).

Cameras capture an image of a scene. Processing these images is a huge
challenge.

Edge detection processing attempts to find the edges in an image.
Segmentation is the process of organizing an image into sections that

correspond to an object in the image.
Model-based vision uses stored models to compare with features in

images.
Stereo vision gives two views of one scene, adding depth and three-

dimensionality to images.

01.03.3 Sensor fusion
sensor fusion

Sensor fusion is the process of combining information for several sensors.
An example of sensor fusion is the fusion of gyroscopic and accelerometer
data to yield an accurate estimation of the orientation of an object. Gyro-

18 06 June 2020, 18:32:55 01.03 3 4

Chapter 01 Introduction Lecture 01.03 Robot sensitivity

scopes can be used to measure the three-axis angular velocity of an object
very quickly (their response is fast), but in order to determine the angle, the
angular velocity must be integrated to get position. Unfortunately, this is
plagued by an accumulation of error through time. However, the angular
position can be measured quite accurately from a three-axis accelerometer
by tracking the gravitational acceleration direction. The drawback is the ac-
celerometer is slower to respond. In short, for this application, gyroscopes
are fast but lose accuracy over time and accelerometers are slow but accu-
rate.

Enter sensor fusion. A quick response and accurate estimation of the
angular orientation can be found by techniques such as the venerable
Kalman filtering. Kalman filtering

19 06 June 2020, 18:32:55 01.03 3 5

Chapter 01 Introduction Lecture 01.04 Robot potency

Lecture 01.04 Robot potency

A robot must be able to act on its environment. Common acts are in serviceacting

of locomotion and manipulation, but there many others, like cleaning (e.g.
vacuuming), cutting (e.g. CNC milling), and delivering material (e.g. 3D
printing).

As is often the case when deepening our understanding of a device,
following the flow of energy through it, a robot in this case, will help
us better understand it. We start with where the robot gets its energy
and follow this through its application to the environment in an action, as
shown in Figure 01.5.

source storage former actuator effector environment

Figure 01.5: power flow through a robot.

01.04.1 Energy, its source and storage

Actions require energy, which is typically delivered on-demand from the
electrical grid for stationary robots (typically manipulation arms) and
delivered from an on-board battery for mobile robots. Some mobile robots
can harvest energy (e.g. via solar panels), but the rate of harvest is typically
much slower than is required for peak performance. Therefore, mobile
robots tend to have energy limitations and battery technology is crucial forbattery

mobile robot development.

Box 01.1 self-driving cars and batteries

Self-driving cars are typically electric and rely on large, rechargeable
batteries, typically of the lithium-ion variety. Considerations here
include energy storage capacity (vehicle range), power rating (vehi-
cle power), recharge rate (driver waiting for recharge), self-discharge
rate (when chilling), specific energy (J/kg), and lifespan.

01.04.2 Electrical power forming

Before a robot applies power to the environment, it must first first transform
it into the appropriate form for its actuators (considered next). The two
primary forms of electrical power are direct current (DC) and alternatingDC

AC

20 06 June 2020, 18:32:55 01.04 3 1

Chapter 01 Introduction Lecture 01.04 Robot potency

current (AC). Batteries delivers DC power and the grid delivers AC. Some
actuators take DC and others AC power.

In mobile robots, due to a reliance on (DC) battery power and the
efficiency cost of DC-to-AC conversion, DC actuators are preferred. In DC-to-AC

stationary robots, like those for manipulation, AC power is plentiful, so
both AC actuators and DC actuators (using AC-to-DC conversion) are used. AC-to-DC

Further sub-forms of DC and AC power can also be identified, as
outlined in Figure 01.6. These sub-forms come about because most of
the time actuators will need to be delivered variable quantities of power.
For instance, switched DC power or pulse-width modulation (PWM) can switched DC

PWMbe used to deliver variable average power to an actuator: by rapidly
switching DC power on and off, the actuator average power is varied.
This digital electronics technique is usually less expensive than the analog
amplifiers required for truly continuously varying DC power. A drawback amplifiers

of switched power is that it introduces significant high-frequency noise,
which can negatively impact sensors.

AC power also has sub-forms. Some high-power AC actuators require
multiple phases, frequently three. In this case, three different signals with phases

proper phase differences must be delivered. Other AC actuators operate at
one steady-state speed per frequency of AC power. For changing speeds, this
frequency must be varied—something achievable with a variable-frequency VFD

drive.

DC AC

continuously
varying

switched
(PWM)

multi-
phase

variable
frequency

Figure 01.6: forms of electrical power for actuation.

01.04.3 Actuation
actuation

Actuation is a robot’s transduction of electrical power to the proper energy
domain for its corresponding effector (considered next). Usually, this
device is electromechanical. In fact, the paradigmatic actuator is the motor electromechanical

motorin its 31 flavors.
Most motors convert electrical power to rotational mechanical power,

but some, called linear motors, convert to translational power. The funda- linear motors

mental mechanism in a motor is the Lorentz force acting on a wire sur- Lorentz force

21 06 June 2020, 18:32:55 01.04 3 2

Chapter 01 Introduction Lecture 01.04 Robot potency

rounded by a magnetic field and through which electrical current is flow-
ing. The varieties of motors are essentially different methods of arranging
for this mechanism’s unfolding.

The following list describes some types of motors important for
robotics.

DC motors are those that require DC power in its various forms (e.g.
switched).

BDC or brushed DC motors have a mechanical contact that reverses
current flow. These are inexpensive but are less efficient than
other types and require more maintenance due to brush wearing.
PMDC or permanent-magnet DC motors are brushed and have

a background magnetic field generated by permanent mag-
nets. These are relatively easy to model, but require feed-
back to control.

Wound-stator DC motors are brushed and have a background
magnetic field provided by an electromagnetic coil.

BLDC or brushless DC motors are actually AC motors with complex
built-in electronics that allow it to act like a DC motor. These are
more-expensive and require expensive electronic controllers, but
require less maintenance than BDC motors.

Stepper motors are DC motors that (usually) rotate a predictable
amount for each DC pulse applied. The “usually” qualifier
here means that for accurate position control, feedback is still
required. These are fine for some position control, but are not
great for continuous rotation or high speeds.

AC motors are those that require AC power in its various forms (e.g. multi-
phase).

Induction/asynchronous AC motors generate a rotating electromag-
netic field that induces current to flow through an electrical loop
in the rotor (the part that spins with the shaft). Again, the
Lorentz force kicks in. In steady-state, there’s a difference called
slip between the rotation rate of the electromagnetic field andslip

that of the rotor. The speed of these motors is varied by chang-
ing the frequency of the AC power with a VFD. These are very
common for large-load industrial applications.

Synchronous AC motors generate a rotating magnetic field on both
the stator (the part that doesn’t turn) via electromagnetic coils

22 06 June 2020, 18:32:55 01.04 3 3

Chapter 01 Introduction Lecture 01.04 Robot potency

and on the rotor via either permanent magnets or DC electro-
magnets. Since they do not rely on magnetic induction, the rotor
field and stator have the same angular velocity in steady-state
(i.e. there’s no slip). If the rotor uses an electromagnet, brushes
are required, with all their baggage. These can be more expen-
sive than induction motors, but they can be also be driven by a
VFD.

Another term frequently encountered here is servomotors, which has two servomotors

common meanings. The first is simply most any of the motors above2 of
suitable quality for precise feedback control. The second is really a package:
a motor, a speed measurement device (usually an encoder), and a feedback encoder

feedback controllercontroller. Sometimes the controller is included and other times it is sold
separately.

Since the desired effect of the actuator on the effector is frequently not
simply rotation in the range of speed and torque of the motor, mechanisms mechanisms

frequently comprise the final stage of the actuator. This is the stuff
of mechanical engineers’ dreams: gears, spools, pulleys, linkages, belts,
tracks, power screws, etc.

01.04.4 Affection

It also means “to affect”—the robot’s environment in this case! Most of the
time, this is a mechanical interaction. And interaction it is: let’s not forget
Newton’s third law here; the robot’s structure and, if applicable, base, will
experience reaction forces.

Devices actuators use to yield effects in the environment are called effec- effectors

tors,3 which have direct interaction with the environment. Common effec-
tors include pretty much all the locomotion devices considered previously
and grippers, claws, feet, wipers, water jets, high-power lasers, sanding
pads, and suction cups.

2A possible exception here is a stepper servomotor.
3Affect is usually a verb and effect usually a noun, so you might be offended by the

term “effector.” However, effect can be a verb. I looked it up.

23 06 June 2020, 18:32:55 01.04 3 4

Chapter 01 Introduction Lecture 01.04 Robot potency

Example 01.04-1 power flow through a solar rover bot

Consider a solar-powered rover bot for exploring the surface of
Mars, illustrated below (PR). For the behaviors of (a) driving and (b)
collecting a soil sample with an arm, trace the flow of power through
the robot, and along the way identify energy storage elements,
energy transducers, actuators, and effectors.

24 06 June 2020, 18:32:55 01.04 3 5

Chapter 01 Introduction Lecture 01.05 Robot intelligence

Lecture 01.05 Robot intelligence

Intelligence is famously challenging to define, but that won’t stop us.

Definition 01.05.1: intelligence

Intelligence is the ability to map perceptions to performant actions.

Let’s consider this definition specifically with regard to robot intelligence, robot intelligence

a form of artificial intelligence. Here, perceptions are measurements, discussed artificial
intelligence

perceptions
in Lecture 01.03. Actions are with the robot’s environment (Lecture 01.04).

actions
The remaining qualifier here is performant: to perform well with respect to

performant
a metric.

metricLet’s consider this last requirement in more detail, with reference to
Figure 01.7. If a robot action map did not have a metric, it would offend our

robot action map
measurements actions

Figure 01.7: robot action map.

sense of the meaning of the term “intelligence.” For instance, if a vehicle in
locomotion perceived an obstacle, was mechanically capable of avoiding a
collision, but did not, it would not seem intelligent. If one of its metrics is
collision-avoidance, it performed poorly and looks dumb. If it didn’t have
such a metric in the first place, it looks not-even-dumb. Stupidly, it was
lacking an obvious aspect of locomotion.

The term goal or objective is frequently used here, in the sense that for goal

objectivesomething to be intelligent it must have one. But there is something more
implied in the term “goal”: intention. It was the study of biology that first intention

alerted us to the limitations of requiring intelligence to involve intention.
Many biological systems exhibit what we would call intelligence, such as
the flocking of birds as they fly together, without any sort of coordinated
effort. In fact, flocking behavior can be replicated in groups of robots based
on simple rules given to each robot. That is, a complex behavior that could
be assigned a metric (e.g. flocking could be measured by the efficiency of
group flying) can emerge without intention. This is called emergence, a topic emergence

that is perhaps more mysterious than is necessary.

25 06 June 2020, 18:32:55 01.05 3 1

Chapter 01 Introduction Lecture 01.05 Robot intelligence

01.05.1 Robotic applications of artificial intelligence

Before we introduce some of the methods of artificial intelligence, it is
worth considering some of its applications in robotics.

Machine vision systems process image sensor data streams to construct
actionable information. This includes object detection and internal
model construction.

SLAM or simultaneous localization (of the robot) and mapping (of its
environment) must fuse (sensor fusion!) vision and other sensor data.
AI can contribute to this process.

Path planning is the process of planning the route the robot should take
through an environment. For instance, self-driving cars use map data
and GPS to plan its route.

Natural language processing can make the robot responsive to human
speech and allow it to construct human-understandable speech.

01.05.2 Methods of robot intelligence

The development of artificial intelligence (AI) has been so varied in method
that summaries invariably and unjustly minimize entire fields of research.
Therefore, instead of attempting a hierarchical organization, we will high-
light a few ideas of particular interest.

The first is that of symbolic manipulation. Here intelligence is understoodsymbolic
manipulation as the use of symbolic representations and rules of inference. For instance,

if there is a parking spot available on the street, park;
otherwise, circle the block.

There are several symbols here, e.g. a parking spot, the street, parking,
block, circling. This approach has encountered formidable challenges, such
as the signal-to-symbol problem of going from measurement signals to ap-signal-to-symbol

problem propriate symbolic representations. In the example, it is challenging to de-
termine from sensor measurements what is a parking spot. This approach
also encounters the vast ambiguities in natural language; consider the mul-
tiple potential meanings of the sentence, “There’s a spot.” Natural languagenatural language

processing processing is now an entire field of AI.
logical Logical approaches to AI understand intelligence to be comprised of rea-

reasoning soning. Reasoning requires a knowledge base with semantic (i.e. meaningful)
knowledge base

semantics
relations, so knowledge representations have been a significant aspect of this

knowledge
representations

work. This approach features, for instance, the ability to make plans. In

planning

reality, nothing is certain, so logical methods have come to use probabilistic

probabilistic
reasoning

26 06 June 2020, 18:32:55 01.05 3 2

Chapter 01 Introduction Lecture 01.05 Robot intelligence

Figure 01.8: a robotic vehicle hurtling toward an obstacle. (PR)

reasoning with, for instance, Bayesian networks. Another approach to uncer- Bayesian networks

tain reasoning is fuzzy logic in which elements can be in a set to a degree. fuzzy logic

Beyond the minimum requirement set forth in our definition of intelli-
gence, it is certainly a mark of intelligence to adapt or learning: to increase adaptation

learnintelligence from experience. So, consider again the vehicle in locomotion
and perceiving an obstacle it is mechanically capable of avoiding, now il-
lustrated in Figure 01.8. If it has as a metric to avoid obstacles, it might still
hit the obstacle if its action map is insufficiently intelligent. Now consider if
this map is trained on many obstacles such that it tweaks the map in accor- training

dance with its obstacle-avoidance metric. This would yield an action map
the performance of which improves in intelligence. Taken broadly, this pro-
gram is called machine learning, a leading strategy for developing artificial machine learning

intelligence.
One method of machine learning uses large amounts of data to make

inferences about what should be done, making it inherently statistical. A statistics

simple example here is the technique of regression: fitting a function to data regression

by optimizing the function’s parameters.
Another machine learning approach is to train an artificial neural net- neural network

work, a mathematical operation that approximates the function of biological
neural networks that are key to brain activity. Typically, a set of training data training data

that includes labels (the “correct” answers, usually assigned by humans) is labels

processed by the network, which adapts its parameters such that its output
approaches the “correct” answers. Then labeled testing data, on which the testing data

network has not trained, tests to see how well the network performs on new
data.

Relatively recently, a combination of advances in computing power

27 06 June 2020, 18:32:55 01.05 3 3

Chapter 01 Introduction Lecture 01.05 Robot intelligence

and new approaches to using neural networks has been highly successful,
surpassing previous performance metrics for many important applications
(e.g. vision, natural language processing, game playing, etc.). The new
techniques use multiple network layers and are collectively called deeplayers

deep learning learning (deep in layers).

01.05.3 Control theory

A control system, which control theory studies, is comprised of a system tocontrol system
control theory be controlled called the plant, a feedback measurement of the plant’s output,

plant
feedback

and a controller that determines the plant’s input given the feedback and

controller
some goal output. This is frequently represented in the block diagram of
Figure 01.9.

controller plant

measurement

command control effort output

Figure 01.9: a feedback control system block diagram.

If it is successful at meeting performance goals, such a system meets
all the requirements of artificial intelligence in our definition. Although
control theory developed as a separate field from AI, it is in fact another
form and is now generally recognized as such.

Control systems appear all over most robots as subsystems. For
instance, a robot arm joint usually includes a motor (actuator), an encoder
(sensor), and a controller. The plant, then, might be the motor-link
assembly. A process in some higher-level controller that perhaps has
planned the arm’s motion and performed an inverse kinematics calculation
would send a command to the joint to rotate to a specific angle.

01.05.4 General artificial intelligence

There may be objections at this point about our threshold for intelligence
being too low. Some find it to so because they conceive of intelligence as
being what is now called general artificial intelligence: a single AI systemgeneral AI

applicable to any problem. For instance, it would be capable of navigating
a robot, having a conversation, and playing the cello. This is sometimes
called strong AI, in contrast with the version considered above, now termedstrong AI

weak AI.weak AI

28 06 June 2020, 18:32:55 01.05 3 4

Chapter 01 Introduction Lecture 01.05 Robot intelligence

There is no strong AI, at present. However, if it does emerge, it is
possible that it will develop beyond human intelligence rather quickly, into
a state called superintelligence. There are ethical concerns here, with some superintelligence

potential for superintelligence becoming an existential threat to the human
species.

29 06 June 2020, 18:32:55 01.05 3 5

Chapter 01 Introduction Lecture 01.06 Robot artificiality and artificial life

Lecture 01.06 Robot artificiality and artificial life

We have claimed a necessary quality of a robot is that it is artificial, i.e.artificial

designed by humans. We include robots designed by robots designed by
robots . . . designed by robots designed by humans. That is, as long as
the original robot that begot further generations was designed by humans,
these offspring are also considered artificial and therefore robots (if they
also meet our other criteria for a robot). Robots designing robots—what
does this mean?

A field of interest to many roboticists is that of artificial life, whichartificial life

is the interdisciplinary (biology, chemistry, computer science, robotics,
etc.) study of life itself and its artificial creation. The term “life” has
no universally agreed upon definition, but certain features have been
suggested as necessary, such as the following.

Appearing life-like is a tacit requirement for many people. Despite its
apparent banality, this is perhaps not to be overlooked, for it is
plausible that “the meaning of a word is its use in the language”
(Wittgenstein and Anscombe, 2001). This has been taken to heart
by artists such as Theo Jansen, who has created strandbeests: wind-
powered kinetic sculptures that walk on the beech and appear life-
like. This perspective is limited, however, since it doesn’t elucidate
the meaning of “life” to say that it is that which appears to be “life.”

Self-organization is the process of local interactions of a disordered system
yielding global order. Emergence in robotics is a form of self-
organization. Examples of self-organization include ant colonies,
crystal growth, and lasers.

Self-replication is the process of an entity creating a copy of itself (perfect
or not). Of course, these copies would (usually) also be capable of
reproducing.

Natural selection is the evolutionary process that requires both variation
in self-replication and the natural survival and reproduction of those
offspring that are better-adapted to the environment.

Autopoiesis is the (fundamentally cellular) logical loop that posits its own
constitutive self-environment boundary as being caused by itself
(Varela, 1996). Or, “life emerges when the external limitation (of an
entity by its environs) turns into self-limitation” (Žižek, 2012).

Others suggest no such general qualities of life can be established (Wolfram,
2002, 2017) because our definitions are always relative to our own human

30 06 June 2020, 18:32:55 01.06 3 1

Chapter 01 Introduction Lecture 01.06 Robot artificiality and artificial life

perspective. One wonders, however, what more one could hope for from
any definition.

01.06.1 Cellular automata

Early researchers constructed abstract models of life from small sets of basic
rules.

One such model is the cellular automaton, which is a set of (abstract) cellular automaton

cells in a grid (of any finite dimension) such that each cell has neighbors: is neighbors

adjacent to others. Each cell can be in one of a finite number of states. A
set of rules determine the new state of each cell at each (discrete) time step
from its previous state and the previous state of its neighbors. Therefore, in
non-stochastic models, a given initial state or initial condition, together with initial condition

the set of rules, results in a deterministic process.
In Conway’s Game of Life, a two-dimensional cellular automaton, the two Conway’s Game of

Lifestates are taken to be simply “populated” or “empty”. The game has the
following, simple rules:

For a space that is “populated”:
Each cell with one or no neighbors dies, as if by solitude.
Each cell with four or more neighbors dies, as if by overpopulation.
Each cell with two or three neighbors survives.

For a space that is “empty” or “unpopulated”:
Each cell with three neighbors becomes populated.

Somewhat surprisingly, very complex patterns emerge in this simple
game. An example of what a game can look like is shown in Figure 01.10.
Play it yourself, here

www.conwaylife.com

Or download the app Golly here:
golly.sourceforge.net

One such cellular automaton is John von Neumann’s universal constructor John von
Neumann’s
universal
constructor

self-replicating “machine,” which works as follows (Von Neumann and
Burks, 1966). Consider an automaton system containing the following
elements.

A description φ1 of this system sans the description itself (for it cannot
contain both itself and other automatons).

A universal constructor that can read a description of an automaton and
construct it.

31 06 June 2020, 18:32:55 01.06 3 2

http://www.conwaylife.com
http://golly.sourceforge.net

Chapter 01 Introduction Lecture 01.06 Robot artificiality and artificial life

Figure 01.10: a game of life state at one moment in time. Red cells are “populated” and
gray are not.

A universal copier that can copy any description of an automaton.
A controller that applies the constructor and copier.

Let the collection of the constructor, copier, and controller be called X1.
Then the original machine is (X1, φ1). The controller commands as follows.
It

1. commands the copier to make two copies φ2 and φ3 of the instruc-
tions φ1;

2. commands the constructor to read φ3 (thereby destroying it) and
construct a new machine (sans instructions) X2; and

3. ties together X2 with the undestroyed copy of the instructions φ2.

Now there are two machines, the original (X1, φ1) and its descendant
(X2, φ2).

01.06.2 Living robots?

Lest we seem to be too far afield from robotics, let’s return to robots, proper,
with their mechanical presences. We have examined how a robot might
be considered intelligent—but alive? Some researchers not only think it is
possible, they plan to make them.

32 06 June 2020, 18:32:55 01.06 3 3

Chapter 01 Introduction Lecture 01.06 Robot artificiality and artificial life

For instance, the “Autonomous Robot Evolution” (ARE) project is
designing an ecosystem for robot evolution (Hale et al., 2019). One of the
key aspects of natural selection is competitive survival, which requires an
arena. This project includes the creation of such an subsystem, along with
several others, such as an ecosystem manager, a virtual environment, and a
training environment.

This is one among several projects with artificial life as a goal. At
this point, few have short-term ambitions to become mechanical, but the
foundations are being laid.

33 06 June 2020, 18:32:55 01.06 3 4

Chapter 01 Introduction Lecture 01.07 Robot autonomy and human-robot collaboration

Lecture 01.07 Robot autonomy and human-robot collab-
oration

Autonomy is our final essential condition for robots. As with some
of the others, it is challenging to draw a line between devices that are
and aren’t autonomous. Even if we were “hardliners,” there would be
ambiguity: does autonomy include independence of human influence in
all things? Consider the following aspects of robot behavior, considered as
the behavior of a group or an individual robot:

who the choice of robot(s) acting,
what the action,
when the timing,
where the location,
why the goal, and
how the method.

Any of these six aspects could be autonomous, but it seems too strong to
require all these to be autonomous; after all, isn’t one of our motivations
for making robots having some influence on them? And there are more
considerations, such as the programming, construction, and even design
of the robot. Perhaps the only fully autonomous robot is an ideal robot
approached in an evolutionary process of “alive” (à la artificial life) robots.4

Our perspective is that if any of the above is autonomous, that is sufficient
to satisfy the condition of robot autonomy.

It turns out we would like to inhabit the same spaces as robots. In
fact, one of our primary motivations for building robots is to have them
help us. If you’ve ever been helped by someone over whom you have no
influence, you’ll start to see the trouble with “fully autonomous” robots.
What has proven more valuable in virtually every field of robotics is work
that contributes to the better integration of human and robot activities. A
way to consider the breadth of this field is to give it two categories.

Human-robot interaction (HRI) is the broad and interdisciplinary study of
the interaction of robots with humans, including communication,
socialization, and design.

Human-robot collaboration (HRC) is the study of human-robot teams work-
ing together to achieve goals. It is sometimes considered a subcate-
gory of HRI.

4And even here, one may object that the evolutionary process was started by humans,
the conclusion being that a truly autonomous robot is, in fact, impossible.

34 06 June 2020, 18:32:55 01.07 3 1

Chapter 01 Introduction Lecture 01.07 Robot autonomy and human-robot collaboration

We will here explore HRC in more detail.

01.07.1 Human-robot collaboration (HRC)

It has been observed that what is hard for a human is easy for a robot and
what is easy for a human is hard for a robot. This is often understood
as a challenge to human-robot interaction: humans tend to expect robots
to be able to perform tasks simple to humans easily, so robots frequently
seem downright inept. However, we can also turn this observation around:
humans and robots are actually complementary. complementary

The problem, then, is to find ways for robots to work collaboratively with collaboration

humans—not necessarily replace them. There are, of course, several chal-
lenges, most of which have been revealed by attempts to design, build, and
deploy collaborative robots. Other challenges were predicted by studying
human collaboration to discern some essential qualities of collaboration that human

collaborationwill likely remain true in successful human-robot collaboration. Before we
consider some important ideas that have emerged from these studies, it is
worth noting that, since humans find collaboration with humans on many
tasks, like moving furniture, simple, we should expect that robots won’t.
And this turns out to be very much true.

shared goal Collaboration requires team members share a common goal.
commitment Collaboration requires members of the team to be committed

to the achievement of the common goal.
knowledge Collaboration requires members of a team to internally repre-

sent knowledge of the states of the environment.
sensitivity Collaboration requires team members be sensitive to the envi-

ronment, each other, and themselves.
communication Collaboration requires team members to be able to com-

municate effectively, updating each other about the states of the envi-
ronment and themselves.

planning Collaboration requires team members be able to plan; that is, to
reason through which actions are required to achieve a common goal.

Relatively simple models of practical reasoning (e.g. belief-desire-
intention or BDI, Müller (1999)) and relatively detailed cognitive
architectures (e.g. Soar, Laird (2012)) have been used to better design
robots that can better collaborate with humans.

Several robot control architectures have been developed with insights
gained from this work. We will review some important examples in
Chapter 04.

35 06 June 2020, 18:32:55 01.073 2

Chapter 01 Introduction Exercises for Chapter 01

01.08 Exercises for Chapter 01

Exercise 01.1

Classify each of the following as robot or not-robot. If it is not a robot, list
the missing qualities. Comment on ambiguities.

a. A conveyor belt that maintains a constant speed regardless of load.
b. A remotely controlled unmanned aerial vehicle (UAV).
c. A simulated spaceship.
d. A raven.
e. A high-speed train.

Exercise 01.2

For each of the types of robots described below, list at least one potential
actuator, effector, and behavior.

a. A self-driving truck.
b. A small, insect-like aerial robot.
c. A manufacturing robot that sands parts.

Exercise 01.3

For each of the robot behaviors below, list three useful sensors.

a. Flying through air.
b. Driving across bumpy terrain.
c. Swimming through water.
d. Pouring a glass of whiskey.
e. Folding a shirt.

Exercise 01.4

For each of the robot-action pairs described below, describe a specific
potential actuator and effector.

a. A mobile robot lifting a crate from the ground to a shelf at a height of
3 m.

b. A stationary manipulator robot painting a car.
c. A small mobile robot hopping up stairs.

36 06 June 2020, 18:32:55 01.083 1

Chapter 01 Introduction Exercises for Chapter 01

Exercise 01.5

Write a one- or two-sentence response to each of the following questions
and imperatives.

a. Why must robot action maps be performant to be considered intelli-
gent?

b. What is machine learning?
c. Apply the definition of intelligence to the following system to deter-

mine if it is intelligent: a control system that rotates a link at a constant
rate, regardless of load.

Exercise 01.6

Play a standard Conway’s Game of Life on paper,
starting with the configuration shown. How many
generations does it take to develop a static pattern,
and what is that static pattern?

Exercise 01.7

Write a one- or two-sentence response to each of the following questions
and imperatives.

a. What are some aspects of a self-driving car that are autonomous?
Explain why!

b. Classify each of the following as human-robot collaboration or not.
Explain why!

i. A manufacturing process in which a human builds a robot
performs a task, then, separately, the robot performs a task.

ii. A manufacturing process in which a human and a robot perform
parts of the same tasks, simultaneously, in the same space.

iii. A drone with autopilot and a remote human actuating cameras
aboard the drone.

iv. A team of five drones and two humans searching a disaster
area for survivors, with the drones giving the humans additional
views of hard-to reach areas.

v. A robot crawling through a tight space with a human operator
that has some control, but who is overridden when the robot
deems a command from the operator to be dangerous.

37 06 June 2020, 18:32:55 01.083 2

Chapter 01 Introduction Exercises for Chapter 01

c. Why is it that robots are probably better when they aren’t “fully”
autonomous?

38 06 June 2020, 18:32:55 01.08 3 3

02

Embodiment

03

Robot mechanics

04

Robot control architectures

control
architecturesRobot control architectures are conceptual structures for organizing robot

control such that we can design controllers systematically. All such
architectures include maps of measurements to actions, a process that was
central to our definition of intelligence (Lecture 01.05). We call this process
sense-decide-act (SDA). With reference to Figure 04.1, sensing (measurement) SDA

provides the robot with information about the state of itself and the
environment; from this, a decision is made about how the robot should act;
finally, the robot acts. The differences among robot control architectures lie
almost entirely in the decide step—that is, in the controller. controller

controller(s) actuators/effectors robot/environment

sensors/support

decide
act

sense

Figure 04.1: a block diagram showing the sense-decide-act structure common to all robot
control architectures.

The “controller” here is not necessarily a single device, although it can
be. Control devices are frequently microcontrollers that include microproces- microcontrollers

microprocessorssors, memory, and input/output interfaces. However, some control logic
memoryis so simple, it can be instantiated in analog- or digital-circuits alone. It

is also notable that the diagram of Figure 04.1 encompasses processes that
can be happening asynchronously and in parallel. For instance, measure-
ments may be made at different times, controller decisions may take differ-
ent times for different situations, etc.

Chapter 04 Robot control architectures Chapter 04 Robot control architectures

From our understanding of feedback control theory,1 we can conceive of
how we might control simple robot actions, such as turning by some angle
or raising an effector to some height. While feedback control systems of
complex systems (like a robot arm) can be very complicated, they typically
require low-level commands, i.e. a goal state through time.low-level

commands

Actions, tasks, and behaviors

As necessary as feedback control is, it is inadequate to command the robot
to perform complex actions, such as finding an object or exploring an
environment—i.e. high-level commands. But just such high-level commandshigh-level

commands are what a designer would like to give a robot. Sometimes, we say there
are mid-level commands as well, those that require more than low-levelmid-level

commands commands, but are probably lower-level than a robot designer would like
to give. In fact, we can categorize actions by command complexity.

Simple actions are those that require only low-level commands. For
instance, moving an effector to a given state is a simple action.

Tasks are actions that require only mid-level commands. For instance,
grasping an object in a gripper is a task.

Behaviors are actions that require only high-level commands. For instance,
following walls is a behavior.

These categorizations are helpful, as we’ll see, despite their ambiguity.

Models and their representation

Some robot control architectures use internal models to help the controller tomodels

decide what to do. These models are typically mathematical models, maps
of the environment, and mechanical solid models. Models, of course, need
representations that can be stored in computer memory. However, modelsrepresentations

useful in many robot control applications take a lot of memory (i.e. they
are memory-intensive), which is only the first of three major drawbacks. Thememory-intensive

second is that using the models is processing-intensive, which costs power,processing-
intensive money, complexity, and most importantly time. The third drawback is that

time-intensive these internal models don’t age well and usually require constant updates
in a dynamic environment.

Despite the drawbacks, however, models are very helpful, especially
when the robot is to be designed to exhibit a behavior that requires multiple

1We assume the reader has at least a cursory understanding of feedback control theory.
If not, please review Chapter 01 of our Control: an introduction.

44 06 June 2020, 18:32:55 04.00 3 9

http://ricopic.one/control/

Chapter 04 Robot control architectures Chapter 04 Robot control architectures

steps to be effective. For instance, it’s not hard to go from location A to
location B when there are no obstructions: just go toward B. However, if
there are obstacles, it is more-difficult, and if there is a labyrinth—a map
would surely help!

The architectures

There are four common robot control architectures.

deliberative control Deliberative control makes extensive use of stored in-
formation and models to predict what might happen if different ac-
tions are taken, attempting to optimally choose a course of actions.
This allows the robot to plan a sequence of actions to achieve com- planning

plex goals (exhibit a behavior), thereby allowing a designer to give
high-level commands that are interpreted in terms of extensive mod-
els. This paradigm is often called sense-plan-act, thereby substituting sense-plan-act

“plan” for “decide” in our usual scheme. In essence, deliberative con-
trol decides actions through careful planning. Deliberation is costly
in terms of the hardware required, the energy used by computation,
and, most importantly time. Even with seemingly ever-increasing
processing power, time remains the bottleneck for deliberative con-
trol. “Pure” deliberative control is rarely used, as we’ll see, but it is
nonetheless indispensable for some behaviors.

reactive control Reactive control is rather elegant in its simplicity: simple
rules map sense data to simple actions, but in combination these
rules interact to generate task-level actions. Or perhaps it’s better to
say a designer arranges these simple rules to achieve modular task-
level actions. The most common variety of this architecture is the
subsumption architecture, which uses the concept of layers, which can subsumption

architectureaffect (subsume) each other in limited ways we’ll explore. Layers can
frequently be constructed to yield task-level actions, but usually more
is required to exhibit full-blown behaviors (again, these categories are
fuzzy).

hybrid control In hybrid control, a wedding is held for deliberative and
reactive control in the hopes that each’s positive qualities will be
brought forth and negative qualities will be left behind. This is
probably the most popular approach, but it is very challenging
to arbitrate between or mix the two approaches in such a way
that it doesn’t comprise an unhappy union. Popular tasks for
reactive control are danger-zone shutdowns, obstacle-avoidance, and

45 06 June 2020, 18:32:55 04.00 3 10

Chapter 04 Robot control architectures Chapter 04 Robot control architectures

pretty much any activity that requires a quick . . . reaction. Left
to deliberative control are the high-level decisions that aren’t too
time-sensitive, such as path-planning, object recognition, and task
coordination.

behavior-based control Behavior-based control tries to extend reactive con-
trol beyond tasks to behaviors. This is really an attempt to design
emergence, a behavior that is not explicitly commanded, but is com-
prised of simple actions running more-or-less in parallel. As we
will see, reactive and behavior-based control rely heavily on lessons
learned from biology, especially evolution and emergence.

Each of these robot control architectures is explored in this chapter.
Later, we will consider how to instantiate these in software and hardware,
simulated and mechanical.

46 06 June 2020, 18:32:55 04.00 3 11

Chapter 04 Robot control architectures Lecture 04.01 Deliberative control

Lecture 04.01 Deliberative robot control architecture

47 06 June 2020, 18:32:55 04.01 3 1

Chapter 04 Robot control architectures Lecture 04.02 Reactive control

Lecture 04.02 Reactive robot control architecture

Robot control that is characterized by sense data being simply mapped to
simple actions that work together to achieve tasks is said to have a reactivereactive control

architecture control architecture. By “simply mapped,” we mean a long calculation is
not required to determine the appropriate action. Frequently, the maps
are simple rules like, “If s then a.” For instance, “if a dropoff is detected
ahead, stop.” This structure is called a finite state machine (FSM). A FSMfinite state

machines models a robot-environment “world” as consisting of a finite number of
states, exactly one of which exists at each moment. State transitions occurstate transitions

from one state to another when some conditions are met. In the case of “If
s1 then a1,” we define a state transition function (map) f1 that maps (sense)state transition

function event s1 to action a1, which presumably will change the actual state to some
(usually) new state s2.

s1 s2state-space

choose a1
f1 a1

Figure 04.2: a state transition from s1 to s2 via the state transition function f1 and action
a1.

For simple actions, it is easy to see how these maps work. For more-
complicated actions, especially those involving long sequences of simple
actions, it is not so clear how to go about designing such maps. This is
especially true when we consider the frequently large number of possible
states in which the robot could be: for every position, orientation, speed,
distance from objects, etc., actions must be specified. In other words, the
state-space is usually large and if we imagine, as designers, assigning an
action to each state . . . we see the trouble: there are too many possible
states to choose an action for each. In other words, the problem is usually
intractable.intractable

One approach is to break the state-space into subspaces and assign
actions to these, instead of individual states. But a further complication
here arises: what if the subspace domains of these maps aren’t mutually
exclusive? Consider Figure 04.3. In the region of overlap S1 ∩ S2, both
f1 and f2 apply, leading to different actions a1 and a2. Sometimes there
is no conflict and both actions are desirable (and non-conflicting); other

48 06 June 2020, 18:32:55 04.02 3 1

Chapter 04 Robot control architectures Lecture 04.02 Reactive control

S1

S2

S3

S4
state-space

choose a1

choose a2

f1

f2

a1

a2

Figure 04.3: two overlapping subspaces with corresponding state transitions.

times, only one or the other is desirable, so arbitration is necessary; finally, arbitration

sometimes a fusion is desirable in which the original actions are mixed fusion

in some way. For instance, perhaps S1 = {an object is on the left} and
S2 = {an object is on the right}. In, for instance, a corner of a room, both will
be true, so the state s ∈ S1 ∩ S2 obtains. If a1 is “continue and angle right”
and a2 is “continue and angle left,” which seems reasonable, something
must be be done because there is clearly a conflict here. If we proceed by
arbitration, either a1 or a2 is chosen, but neither is probably desirable. We
could proceed by a simple fusion in which we simply “add” the two actions
(programmatically and not electro-mechanically, which would waste of
power and could cause damage to the robot): the robot would just continue
forward. No, instead, we probably want what could be considered a new
subspace-function-action or a more complex fusion, something like “stop,
rotate by some angle, and continue.”

But even if a designer could go through each subspace and assign it
an action in a reasonable amount of (design) time, which actions (and
arbitrations) should they choose in each state to consistently achieve
desired tasks?

To even further complicate things, the state of the robot must be
estimated from measurements, from which it is not always possible to
completely or accurately reconstruct the state. And even when it is
possible, the estimation process can be model-dependent and therefore it
may take (run) time—something generally discouraged in a reactive control
architecture.

These challenges indicate a systematic design approach. This is pro-
vided by the subsumption [reactive] architecture (SA), to which we now turn. subsumption

architecture (SA)But before we describe its structure, it is worth considering some of its fun-
damental design principles.

49 06 June 2020, 18:32:55 04.02 3 2

Chapter 04 Robot control architectures Lecture 04.02 Reactive control

04.02.1 The world is its own best model

The motto, (Brooks, 1999)

The world is its own best model

is one of the fundamental principles of the SA and other reactive architec-
tures. The idea here is that it is better to get information about the world
from itself than from models thereof—that is: measure it, and now! This
means the SA relies very little on models and computation. For instance,
consider a robot performing the three-action task T1: (a1) pick up an ob-
ject; (a2) open the hatch; and (a3) place the object inside. We could reason
as follows: when we pick up an object, open the hatch, then place the ob-
ject inside. That is, a1 ⇒ a2 ⇒ a3. The implicit assumption, here, is that
we know how things will go. But the world is a fickle place, my friend.
The object was slippery and part way through being picked up (a1), it was
dropped, and nothing was placed inside! Or the hatch got stuck (a2) and
our manipulator crashed into it (a3)! However, using the principle that the
world is its own best model, we would not rely on such (FSM) logic. In-
stead, we might use realtime sensor information, interpreted as events, say

• s1 = {sensed an object to pick up},
• s2 = {sensed an object near the hatch}, and
• s3 = {sensed the hatch is open}.

Then events would proceed as follows:

• if s1 then a1 (should cause s2),
• if s2 then a2 (should cause s3), and
• if s3 then a3.

This is much more resilient; if, for instance, the hatch gets stuck, then
¬s3 and therefore ¬a3—that is, the manipulator would not crash into the
hatch.2

At this point, we can see another way of thinking about this design
principle: it is as if communication among the modules that act is channeledcommunication

through the world itself. Instead of communicating among modules through

2This simple example ignores the obvious fact that even a non-reactive control architec-
ture would probably make more extensive use of sensor data than imagined here. Similarly,
the “model” here is a simplistic FSM logic: if action ai, then the event I expect will certainly
follow. Most models would be more nuanced and be updated from sensor data; however,
added model detail leads to slower responses.

50 06 June 2020, 18:32:55 04.02 3 3

Chapter 04 Robot control architectures Lecture 04.02 Reactive control

software or hardware signals, the results of each one’s action in the world
(environment-robot) are simply there and need no other “model.”

Although this principle was originally developed by the founders of the
reactive control architecture, it has really become a general design principle
in all robotic control. And let’s not kid ourselves: it has its limitations.
The most significant limitation is temporal: sometimes the past and the temporal

limitations(modeled) future are relevant to what actions we would be best taken now.
Furthermore, sensor data is imperfect and incomplete: although we have
said the world is “simply there,” this is actually a fantasy, and we always
have to estimate what is going on from measurements. It is more honest to estimate

say “it is easier to measure most things than to model them.”

04.02.2 Evolution and emergence

The next design principle of the subsumption architecture is

Start with the simplest actions. I.e.—design bottom-up!

The apparent banality of this is deceiving: it is easy to get stuck thinking
about “high-level” behaviors when we begin designing. While we cannot
forget that these are the goal, in a subsumption architecture (and beyond),
the simplest actions are first. The next principle is related:

Iteratively include more actions, debugging along the way.

The idea is to try to form more-complex tasks by including more actions.
How might these actions combine? The following design principle begins
to answer this question:

Higher actions can override lower ones.

We mean “higher” in a sense already alluded to, but which will become
more precise in the next section. Given our bottom-up approach, lower-
levels are designed early and higher-levels are designed later. In this sense,
the subsumption architecture design process follows biological evolution, evolution

which starts simply, builds incrementally, and overrides selectively.
Finally, consider the final design principle:

Complex tasks emerge from combinations of simpler actions.

This is a sort of “promise” that complexity can be achieved by following
these design principles: it is reasonable to expect emergence. Given the emergence

success of this architecture in many robot applications, it seems well-
founded.

51 06 June 2020, 18:32:55 04.02 3 4

Chapter 04 Robot control architectures Lecture 04.02 Reactive control

04.02.3 The subsumption architecture

The subsumption architecture uses a type of finite state machine (FSM)
model.3 Transition functions map subsets of the state-space among each
other.

Design proceeds incrementally by module aka layer, each of whichmodule
layer contains one or (usually) several state transition function definitions. A

layer is designed to achieve a task like “stand up” or “drive forward” ortask

“wander.” Layers are stacked “up,” with the higher layers having twostacked

privileged capabilities over lower layers:

suppression A higher layer can suppress (turn off) one or more of a lower
layer’s input(s).

inhibition A higher layer can inhibit (turn off) one or more of a lower layer’s
output(s).

This provides a great deal of flexibility in the design process. For instance,
consider mobile robot with two layers: a layer L1: wander and a higher layer
L2: avoid obstacles. Most likely, it will be necessary for L2 to inhibit at least
some of the outputs of L1, with L2, doing its best impersonation of Jesus,
“taking the wheel,” if you will.

04.02.4 Similar reactive architectures

It is worth mentioning that many reactive architectures have been devel-
oped from some or all of the principles of the subsumption architecture. In
particular, the behavior-based architecture of Lecture 04.04 is a direct ex-
tension thereof. Others, such as SMACH (wiki.ros.org/smach) from the
Robot Operating System (ROS – we will introduce ROS in Part II). SMACH
uses what is called a hierarchical state machine that has several advantages.hierarchical state

machine

3Brooks uses some nonstandard terminology here that can cause confusion. He calls
the fundamental building unit of the subsumption architecture an “augmented finite state
machine” or AFSM. By “state machine,” he seems to mean what we have called a state
transition function and action. By “augmented,” he seems to mean the inclusion of a regular
transition-action, registers, timers, and connections thereamong (Brooks, 1999, p. 30).

52 06 June 2020, 18:32:55 04.02 3 5

http://wiki.ros.org/smach

Chapter 04 Robot control architectures Lecture 04.03 Hybrid control

Lecture 04.03 Hybrid robot control architecture

53 06 June 2020, 18:32:55 04.03 3 1

Chapter 04 Robot control architectures Lecture 04.04 Behavior-based control

Lecture 04.04 Behavior-based robot control architecture

54 06 June 2020, 18:32:55 04.043 1

Chapter 04 Robot control architectures Exercises for Chapter 04

04.05 Exercises for Chapter 04

Exercise 04.1

Respond to the following questions and imperatives with a sentence or two
and, if needed, equations or a diagram.

a. For a mobile land robot, give an example of a simple action, a task,
and a behavior.

b. Why is it usually best to avoid models, when possible?
c. Which of the robot control architectures considered in the chapter

tends to have the shortest “decide” step in the sense-decide-act
paradigm? Explain why.

d. Explain why a robot control architecture is necessary, especially in
light of the fact that we have feedback control.

Exercise 04.2

Consider a mobile robot we would like to exhibit the behavior of wandering
about an indoor environment with the usual walls, halls, obstacles, etc.,
covering as much of it as possible. It has three “bump” sensors, one in
front and one on each side to detect when it hits a wall. The robot can
drive forward, stop, and pivot. What are the possible states of the robot-
environment system? Design a simple reactive controller that allows it to
cover as much of the environment as possible move about without getting
stuck. Be sure to specify the states that, when sensed, would be mapped
each action, and the new states expected as the outcomes of each action.
Furthermore, be sure to clarify any suppressions and/or inhibitions.

55 06 June 2020, 18:32:55 04.05 3 1

Part II

Introduction to ROS

05

Introducing ROS

All the high-level considerations of Part I have to be instantiated somehow.
How do we keep track of the state of robot? Implement a controller?
Communicate among robots? Interface with a user? The answer is almost
always: (with difficulty and) with computers. And we know what that computers

means: software. software

As we saw in Part I, robots are complicated. Can you imagine the amount
of software required to run a given robot? A ton. Not to mention the
expertise in several sub-fields within robotics. In the late 2000s, roboticists
started the difficult but important task of collaboratively developing an
open-source software framework that can be used to program many
different types of robots: the Robot Operating System (ROS) (Quigley et al., ROS

2009).
ROS is a framework in that it brings together code libraries, code

tools, and development conventions to create a system in which individual
applications can be developed. Many robotics researches share their
expertise and development work via this framework, which means (among
other things) cutting-edge libraries are available to everyone.

We adopt this platform, which is now ubiquitous.

Chapter 05 Introducing ROS Lecture 05.01 ROS methodology

Lecture 05.01 ROS methodology

ROS has several key aspects to its methodology that are worth considering
at this point.

05.01.1 Distributed computing

ROS nodes are software modules running on potentially different comput-nodes

ers. Nodes communicate by sending messages over a network peer-to-peermessages
P2P (P2P) – that is, directly to each other. This lack of centralization is very

flexible and scalable. Nodes, messages, and related concepts are described
further in Lecture 06.01.

05.01.2 Use with other programs

ROS systems can easily interact with software tools for visualization,
navigation, data logging, etc. This strength allows ROS to remain focused
on its core tasks.

05.01.3 Multilinguality

ROS programs can be written in several languages, including Python, C++,
and Matlab. The most popular are Python and C++, and we will use the
former.

The development of ROS programs with a specific language is enabled
by a language-specific client library. All but the Python (rospy), C++client libraries

(roscpp), and LISP (roslisp) client libraries are considered experimen-
tal.1

05.01.4 Modularity

ROS developers (you!) are encouraged to write their programs in a
modular manner such that each module performs some limited task, then
composing several modules to perform more-complex tasks. This makes
debugging, maintenance, and collaboration much easier.

Previously developed ROS programs are available in the default ROS
installation and in the form of additional packages. We will discuss packagespackages

more in Chapter 06.

1For more client libraries, see wiki.ros.org/Client Libraries.

60 06 June 2020, 18:32:55 05.01 3 1

http://wiki.ros.org/Client Libraries

Chapter 05 Introducing ROS Lecture 05.01 ROS methodology

05.01.5 Open sourceness

ROS is open-source! The licensing is such that commercial, proprietary
software can include it, making it a good choice for research and industry.

61 06 June 2020, 18:32:55 05.01 3 2

Chapter 05 Introducing ROS Resource R1 Setting up the development environment

Resource R1 Setting up the development environment

A development environment for ROS can be installed on many personal
computers and operating systems. In this text, we use the following stack
of software for our development environment.

Resource R1.6 VirtualBox

VirtualBox, by Oracle, is a free virtualizer that can install a virtual machinevirtual machines

with a variety of operating systems installed. VirtualBox is cross-platform
and can be installed on most modern operating systems (e.g. Windows,
MacOS, Linux). This allows a host computer (your PC) with (say) Windows
to run a virtual machine with (say) Linux—simultaneously!

Box 05.1 if your computer is resource-challenged

ROS can be resource-intensive, especially when running simulations.
If your personal computer is resource-challenged, especially in RAM
and processing, consider forgoing VirtualBox and installing Ubuntu
in dual-boot mode. More on that in a moment.

Download and install the latest VirtualBox app for your host computer:
virtualbox.org/wiki/Downloads

For greater functionality, consider installing the Extension Pack from the
same downloads page.

Resource R1.7 Ubuntu Bionic (18.04.4) LTS

This popular Linux distribution is fully compatible with the version of ROS
we will use, has a long-term maintenance schedule (LTS), is lightweight,
and is free. Download the Desktop (64-bit) version here:

releases.ubuntu.com/18.04.4

We will install this operating system as a virtual machine with VirtualBox.

Box 05.2 if your computer is resource-challenged: dual-boot

If you decide you need to dual-boot, skip Resource Lecture R1.7.1
and see the installation guide:

help.ubuntu.com/lts/installation-guide/amd64
The official installation guide above may not some Windows 10-
specific instructions; as a supplement, see:

tecmint.com/install-ubuntu-alongside-with-windows-dual-boot

62 06 June 2020, 18:32:55 Resource R1 3 1

http://virtualbox.org/wiki/Downloads
http://releases.ubuntu.com/18.04.4
http://help.ubuntu.com/lts/installation-guide/amd64
http://tecmint.com/install-ubuntu-alongside-with-windows-dual-boot

Chapter 05 Introducing ROS Resource R1 Setting up the development environment

Resource R1.7.1 Preparing a virtual machine

First, we must prepare a virtual machine with VirtualBox. Use the
following steps:

1. In the VirtualBox app, create a New virtual machine. Name it (say)
ubuntu18, select Type Linux and Version Ubuntu (64-bit) .

2. Allocate RAM of at least 4096 MB.
3. Select “Create a virtual hard disk now”.
4. Select “VDI (VirtualBox Disk Image)”.
5. Select “Dynamically allocated”.
6. Allocate a maximum of 15-20 GB of virtual hard disk.
7. Select the new virtual machine ubuntu18 and Start .
8. When prompted, select as the “virtual optical drive” the downloaded

Ubuntu .iso file and Start .

Resource R1.7.2 Install Ubuntu

Pay special attention to the following during the Ubuntu installation
process.

Install Ubuntu .
�3 Download updates while installing Ubuntu.
�3 Install third-party software for graphics and Wi-Fi hardware, Flash,

MP3 and other media.
�3 Erase disk and install Ubuntu.2

The Ubuntu Bionic documentation is available here:
help.ubuntu.com/lts/ubuntu-help

Resource R1.8 Ubuntu VirtualBox Guest Additions

Installing VirtualBox Guest Additions in Ubuntu should improve the per-
formance of your virtual machine. I recommend the following setup pro-
cess.

1. Open a Terminal window.
2. Update your package manager.

sudo apt-get update

2If you’re not installing to a virtual machine, be cautious here!

63 06 June 2020, 18:32:55 Resource 1 3 2

http://help.ubuntu.com/lts/ubuntu-help

Chapter 05 Introducing ROS Resource R1 Setting up the development environment

3. Install Ubuntu VirtualBox Guest Additions.

sudo apt-get install virtualbox-guest-additions-iso

4. Install VirtualBox Guest Utilities.

sudo apt-get install virtualbox-guest-utils

5. Restart the virtual machine.

Resource R1.8.1 Add a shared folder

Your virtual machine can mount a folder on your host machine such that
files can be easily shared between them. In VirtualBox, in your virtual
machine’s Settings Shared Folders , click the button that adds a new shared
folder. Give it the path of the shared folder on the host machine and do
auto-mount. This directory should now be available in the virtual machine
as a mounted drive.

Resource R1.9 ROS Melodic Morenia

We will install the recent version ROS Melodic Morenia to our Ubuntu
Bionic virtual machine. Follow the official instructions:

wiki.ros.org/melodic/Installation/Ubuntu

It assumes you will enter the given commands in the Terminal in Ubuntu,Terminal

which can be opened through the GUI or with the keyboard shortcut Ctrl +

Alt + T .
Follow the recommended options and be sure to:

• install the “Desktop-Full” version;
• under “Environment setup,” follow the instructions to source your

environment variables in your dotfile ~/.bashrc; and
• under “Dependencies for building packages,” install the recom-

mended tools, listed in the provided command.

Consider working through the first four ROS tutorials:
wiki.ros.org/ROS/Tutorials

Use the recommended catkin option.

Resource R1.10 Python

We will write most of our ROS code in Python 2. It’s best practice notPython 2

to mess with Ubuntu’s Python installation and instead install our own.

64 06 June 2020, 18:32:55 Resource R1 3 3

http://wiki.ros.org/melodic/Installation/Ubuntu
http://wiki.ros.org/ROS/Tutorials

Chapter 05 Introducing ROS Lecture 05.01 ROS methodology

The package pyenv3 will help us manage what will be multiple Python pyenv

versions. Installing pyenv is easy in a Terminal.

curl https://pyenv.run | bash

Be sure to open your ~/.bashrc file (e.g. gedit ~/.bashrc) and add
the following lines.

export PATH="/home/picone/.pyenv/bin:$PATH"
eval "$(pyenv init -)"
eval "$(pyenv virtualenv-init -)"

To finalize the installation, either open a new Terminal or exec $SHELL
(this will reload your .bashrc so that pyenv is available to the bash shell).
Now create a fresh Python 2 installation using pyenv.

pyenv install 2.7.17

Now we can list installed Python versions with the following command.

pyenv versions

system
2.7.17

To set the global default Python version, use the following.

pyenv global 2.7.17

You can also set local Python environments using pyenv local, which
sets the environment in the current and sub-directories.

3See github.com/pyenv/pyenv for documentation.

65 06 June 2020, 18:32:55 05.01 3 4

http://github.com/pyenv/pyenv

06

ROS basics

In this chapter, we will explore some of the basic concepts and tools used to
create ROS systems. Understanding the structure and organization of these
systems is a prerequisite for developing ROS systems of our own.

Box 06.1 Install first

Before continuing, install ROS. See Resource 1.

Chapter 06 ROS basics Lecture 06.01 ROS graphs

Lecture 06.01 ROS graphs

A ROS graph is a graph (à la graph theory) representation of a ROS systems,ROS graphs
graph theory such as that of Figure 06.1. Graph nodes represent ROS programs running

nodes on potentially different machines. Graph edges represent the peer-to-peer
edges communication of messages among nodes.

foo bar baz

Figure 06.1: a ROS graph with nodes in green and edges in black.

06.01.1 Big Other roscore

Jacques Lacan introduced the concept of the “big Other,” who is, among
other things, the virtual repository of all knowledge, the invisible guarantor
that the network of symbols is consistent, and the registrar of the symbolic.1

The big Other of ROS is the communication service roscore: all nodes of aroscore

ROS system register the message streams they provide and those to which
they would like to subscribe.

These message streams are organized by topics: a node that publishestopics

information for other nodes does so by registering a topic with roscore.
roscore maintains lists of these topics and subscribers thereto and pro-
vides these details to any node upon request. If node foo publishes to a
topic x, subscribed-to by node bar, foo would find out that bar has sub-
scribed, then would directly transmit messages to bar on topic x, as shown
in Figure 06.2.

foo bar
x

Figure 06.2: a ROS graph of nodes foo and bar showing the peer-to-peer transmission
of messages on topic x.

Thus, big Other roscore is virtually in all ROS graphs, required for its
existence, but we don’t include it explicitly. We must launch a roscore
service for every ROS system. Doing so is trivial in a Terminal window, as
follows.

1See, for instance, How to Read Lacan (Žižek, 2006).

68 06 June 2020, 18:32:55 06.01 3 1

Chapter 06 ROS basics Lecture 06.01 ROS graphs

roscore

Fortunately, we won’t have to remember to do this manually every time, as
we’ll see when we discuss roslaunch in Lecture 06.03.2.

69 06 June 2020, 18:32:55 06.01 3 2

Chapter 06 ROS basics Lecture 06.02 ROS packages

Lecture 06.02 ROS packages

ROS code is arranged into packages. Before we can describe packages,packages

though, we need two apparatus: the ROS build system catkin and thecatkin

ROS workspace.workspaces

06.02.1 The ROS build system catkin

Most software is written by programmers as source code in some program-source code

ming language. In this text, we write source code in Python. When the
software is ready to be used, it is converted from source code into (binary)
machine code and packaged up for distribution. A piece of software that
controls this process is called a build automation utility. Examples includebuild automation

utility Make, Qbs, and Cabal.
ROS has its own build system catkin built atop CMake, which is itselfcatkin

built on Make. It shares a name with the cluster of flowers such as that of
the willow, pictured in Figure 06.3. Because we are developing in Python,
we will use only a few of catkin’s features, some of which are introduced
in the following sections.

Figure 06.3: the catkin of a willow (Didier Descouens).

70 06 June 2020, 18:32:55 06.02 3 1

https://en.wikipedia.org/wiki/File:Salix_caprea_Male.jpg

Chapter 06 ROS basics Lecture 06.02 ROS packages

06.02.2 ROS workspaces
workspaces

Workspaces are directories in which you can develop ROS code. Each project
should have its own workspace, and workspaces cannot interact.

06.02.2.1 Setting up a workspace

We will now set up a workspace. Open a bash terminal.2 Change (cd) to a
convenient directly like your user home directory ~. Make a new directory
for your code like code as follows.

cd ~ # change directory to user home
mkdir -p code # -p creates dir only if it doesn't exist
cd code # change directory into code

Now make a directory ros_ws_01 for your new workspace.

mkdir -p ros_ws_01
cd ros_ws_01

Every workspace needs a source directory src.

mkdir -p src
cd src

Let’s inspect the tree we’ve made.

pwd # print current directory

/home/picone/code/ros_ws_01/src

06.02.2.2 Initializing the workspace

Now that we’re in the src directory, we can initialize a workspace.

catkin_init_workspace

2We assume you have sourced the ROS distribution setup.bash in your .bashrc file
so it will load when you open a new bash terminal.

71 06 June 2020, 18:32:55 06.02 3 2

Chapter 06 ROS basics Lecture 06.02 ROS packages

Copying file from
"/opt/ros/melodic/share/catkin/cmake/toplevel.cmake" to
"/home/picone/code/ros_ws_01/src/CMakeLists.txt"

↪→
↪→

As we can see, this created a file CMakeLists.txt.

ls # list files and folders in current dir

CMakeLists.txt

Now we can finalize our new workspace using the catkin_make
command from the workspace root.

cd .. # up a level to ros_ws
catkin_make

We have made a workspace!

06.02.2.3 Sourcing the workspace

Let’s investigate the new directories in our workspace.

ls

build devel src

So build and devel are new! We will not make much use of the
former, but the latter will include the setup.bash file, which we will
source in order to make available to our shell the new workspace.

source devel/setup.bash

Note that this must be sourced whenever a new terminal (bash shell)
is opened. Of course, you can make this automatically be sourced in your
~/.bashrc file, but this assumes you will only be using this workspace.

06.02.3 ROS packages

ROS packages are code directories containing certain files and organized inpackages

a certain way. Packages are usually written for specific applications, but
could be applied to many others. The ROS community tends to share
packages and develop them cooperatively, but there are privately held
packages as well (the ROS license permits this).

72 06 June 2020, 18:32:55 06.02 3 3

Chapter 06 ROS basics Lecture 06.02 ROS packages

06.02.3.1 Creating a new package

In this section, we will create a new package. Packages are developed in a
workspace’s src directory. Let’s cd to that of the workspace created in the
preceding section.

cd ~/code/ros_ws_01/src

We can create a new package as follows.

catkin_create_pkg sweet_package rospy

Created file sweet_package/package.xml
Created file sweet_package/CMakeLists.txt
Created folder sweet_package/src
Successfully created files in

/home/picone/code/ros_ws_01/src/sweet_package. Please adjust
the values in package.xml.

↪→
↪→

This created the directory sweet_package and populated it with
CMakeLists.txt, package.xml, and the directory src.

cd sweet_package
ls

CMakeLists.txt package.xml src

The first of these has information for catkin and the directory src is
initially empty – it will contain the package source code we will write. The
package.xml file contains package metadata and should be edited.

cat package.xml

The following is an abbreviated version of the package.xml file
contents with some editing.3

3A built-in text editor gedit can be used (e.g. gedit package.xml). However,
consider installing the friendlier app Sublime Text via the Ubuntu Software app store. It
will give you the command subl (e.g. subl package.xml) which you can use to easily
edit many text-based files such as xml files.

73 06 June 2020, 18:32:55 06.02 3 4

Chapter 06 ROS basics Lecture 06.02 ROS packages

<?xml version="1.0"?>
<package format="2">
<name>sweet_package</name>
<version>0.0.0</version>
<description>The sweet_package package</description>

<!-- One maintainer tag required, one per tag -->
<maintainer email="rpicone@stmartin.edu">Rico Picone</maintainer>

<!-- One license tag required, multiple allowed, one per tag -->
<license>BSD</license>

<!-- Url tags are optional, multiple allowed, one per tag -->
<url type="website">http://wiki.ros.org/sweet_package</url>

<!-- Author tags are optional, multiple allowed, one per tag -->
<author email="rpicone@stmartin.edu">Rico Picone</author>

<!-- The *depend tags are used to specify dependencies -->
<buildtool_depend>catkin</buildtool_depend>
<build_depend>rospy</build_depend>
<build_export_depend>rospy</build_export_depend>
<exec_depend>rospy</exec_depend>

<!-- The export tag contains other, unspecified, tags -->
<export>
</export>
</package>

I have filled in some of this information as an example. Of special im-
portance are the depend tags. When we called catkin_create_package,depend tags

the first argument was the name of our new package sweet_package and
the second argument was a dependency rospy, a ROS package which is the
dependency that is required for writing nodes in Python. Note that this de-
pendency appears in package.xml under multiple types of depend tags;
the differences among these tags will be discussed, later. For now, note that
we could have added more dependencies when we created the package by
listing them after rospy. But we can always add more dependencies later
by directly editing package.xml.

Now that we have a package, we can add Python code files (.py)
that will become ROS graph nodes to the sweet_package/src directory.
Before we do this for our own package, however, let’s first learn how to run
some nodes that come from pre-existing packages.

74 06 June 2020, 18:32:55 06.02 3 5

Chapter 06 ROS basics Lecture 06.03 Running and launching ROS nodes

Lecture 06.03 Running and launching ROS nodes

Let’s fire up some ROS nodes! Technically, we could cd around our
filesystem, find packages, and start nodes with4

python <filename>.py

However, this is highly inconvenient. The rosbash package includes
several utilities to improve this experience. Install it with the following.

sudo apt install rosbash

Reload your shell with exec $SHELL.
First, we might want to list files in an installed ROS package by simply

executing, in any directory, rosls as follows. rosls

rosls <package_name>

Second, we might want to change to the directory of an installed ROS
package with, in any directory, roscd as follows. roscd

roscd <package_name>

Third, there’s tab completion. Terminal itself has tab completion: in any tab completion

directory with a subdirectory named foo, type cd fo<tab>. It’s a sort
of autocompletion. ROS itself has this for its commands like roscd. Try
starting to to type roscd rospy_tutorials and hit tab . If there’s more
than one matching package, double-tap tab to get a list.

There are a couple others that we’ll explore in the following sections:
rosrun and roslaunch.

06.03.1 Running ROS nodes

In this section, we’ll start a few nodes, mostly from the rospy_tutorials
package, installed with the following command.

sudo apt install ros-melodic-ros-tutorials

4For the curious, some nodes we’ll be starting in a second could be started by navigating
to /opt/ros/melodic/share/rospy_tutorials/001_talker_listener and exe-
cuting, say, python talker.py.

75 06 June 2020, 18:32:55 06.03 3 1

Chapter 06 ROS basics Lecture 06.03 Running and launching ROS nodes

As usual, after installation, exec $SHELL Before we start any nodes, we
need a roscore service started.

roscore

Now open a fresh terminal. We’ll start our first “real” node with the
rosrun command.rosrun

rosrun rospy_tutorials talker

In general, the syntax is as follows.

rosrun <package_name> <program_filename> [args]

So talker.py is run and should start printing something like the follow-
ing every ten milliseconds.

[INFO] [1585538656.490473]: hello world 1585538656.49
[INFO] [1585538656.591393]: hello world 1585538656.59
[INFO] [1585538656.691669]: hello world 1585538656.69

This talker node is publishing hello world <time> on topic
chatter. In a new terminal window, let’s start a node to listen to the topic
chatter: the listener node.

rosrun rospy_tutorials listener

This should give us something like the following.

[INFO] [1585542073.580711]: /listener_6552_1585542070720I heard
hello world 1585542073.58↪→

[INFO] [1585542073.682800]: /listener_6552_1585542070720I heard
hello world 1585542073.68↪→

[INFO] [1585542073.780337]: /listener_6552_1585542070720I heard
hello world 1585542073.78↪→

The ROS graph we just built is considered the “hello world” of ROS and
is depicted in Figure 06.4.

talker listener
chatter

Figure 06.4: the talker-listener ROS graph with topic chatter.

You can generate similar ROS graph representations with the following,
in a new Terminal.

76 06 June 2020, 18:32:55 06.03 3 2

Chapter 06 ROS basics Lecture 06.03 Running and launching ROS nodes

rqt_graph

When you’re satisfied, stop each node with ctrl + C . stop a node

06.03.2 Launching ROS nodes

It is inconvenient to manually rosrun every node for larger (i.e. typical)
ROS graphs. Launch files have extension .launch and are collections launch files

of node information that the command roslaunch operates on. The roslaunch

example talker-listener graph from above has a launch file talker_
listener.launch.

Let’s first find the launch file.

roscd rospy_tutorials/001_talker_listener
ls

listener listener.py README talker talker_listener.launch
talker.py↪→

Now let’s print its contents.

cat talker_listener.launch

<launch>
<node name="listener" pkg="rospy_tutorials" type="listener.py"

output="screen"/>↪→
<node name="talker" pkg="rospy_tutorials" type="talker.py"

output="screen"/>↪→
</launch>

The pkg parameter for each node tag specifies the package from which
the node comes; the type tag, the Python file; the output tag is often
"screen" so that the node outputs to the console (instead of just a log file).
The name tag may at first seem superfluous. However, it is very important:
distinct names can be given to the same node type. For instance, two
listener.py nodes can be launched with distinct names. This is one way
of separating what is called the namespace of a ROS graph. namespace

From any directory, the talker-listener graph can be launched with
the following call to the launch file.

roslaunch rospy_tutorials talker_listener.launch

We should get the same results as our manual (rosrun) method above.

77 06 June 2020, 18:32:55 06.03 3 3

Chapter 06 ROS basics Lecture 06.04 Coordinate frame transformations

Lecture 06.04 Coordinate frame transformations

Robotics requires we keep track of the positions and orientations of many
objects in three-space. A rigid body’s state can be expressed as a three-
dimensional position and orientation (angular position). In a coordinateposition

orientation system, this takes a minimum of 3+ 3 = 6 coordinates.

Different objects have different convenient coordinate systems. For
instance, a mobile robot might have a body-fixed coordinate system with originbody-fixed

at its geometric centroid, x-axis pointing forward, y-axis pointing leftward,
and z-axis pointing upward. Locating an object in this coordinate system
would be different than that of, say, a base station. Consider for a mobile
robot a two-dimensional body-fixed coordinate system o, world coordinate
system w, and a pseudo body-fixed coordinate system p that is merely a
translation of the world coordinate system to the p origin—see Figure 06.5.
Let a point in space in w/p/o-coordinates is represented by the position
vector rw/rp/ro. Let t, be a vector from the w-origin to the p-origin.

xw

yw

xp

yp

xo

yo

t

θ

rw

rpro

Figure 06.5: a two-dimensional body-fixed coordinate system o, world coordinate system
w, and a pseudo body-fixed coordinate system p.

78 06 June 2020, 18:32:55 06.04 3 1

Chapter 06 ROS basics Lecture 06.04 Coordinate frame transformations

06.04.1 Translation

Suppose the robot can only translate and not rotate. Thew and p coordinate
transformations are sufficient to describe its motion. The transformation is

rw = rp + t (06.1a)
rp = rw − t. (06.1b)

As we will see in a moment, rotation of a vector is described by a matrix
operation on a vector. It is therefore convenient to write translation as a
matrix operation in one extra dimension:

rw =

1 0 tx
0 1 ty
0 0 1

 rp (06.2a)

=

1 0 tx
0 1 ty
0 0 1

︸ ︷︷ ︸

T

rpxrpy
1

 (06.2b)

=

rpx + tx
r
p
y + ty
1

 . (06.2c)

The last component, then, becomes an accounting tool for writing the trans-
lation operation in this form—called a homogeneous representation (Bullo and homogeneous

representationLewis, 2005). The transformation matrix T translates but does not rotate.

Exercise 06.1

Show that rp = T−1rw by showing it to be equivalent to Equation 06.1b.

06.04.2 Rigid body transformation

Transformation to and from a body-fixed coordinate system is usually a
rigid body transformation: one that changes coordinate frame origin position rigid body

transformationand orientation, but preserves the Euclidean distance between any two
points. Transformations between the w and o coordinate systems, above,
are rigid body transformations. These could be represented as a rotation rotation matrix

matrix R transformation followed by a translation by t:

rw = Rro + t. (06.3)

79 06 June 2020, 18:32:55 06.04 3 2

Chapter 06 ROS basics Lecture 06.04 Coordinate frame transformations

Here, R rotates counter-clockwise by θ with matrix

R =

[
cos θ − sin θ
sin θ cos θ

]
. (06.4)

However, we frequently like to write this in a homogeneous representa-
tion, as well, again adding a component to the vectors such that R becomes

R =

cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 (06.5)

and the rigid body transformation becomes

rw = TRro. (06.6)

06.04.3 Rotation transformations

Rotation transformations, such as R above, come in a variety of flavors.

Euler angles These rotations are described by the sequential rotation about
a (typically) body-fixed coordinate system. The order matters because
rotating about one axis changes the direction of the others! Not one,
but several conventions exist for Euler angle rotation.

Fixed angles Similarly, rotations can be described about axes the origin of
which remains fixed to the body, but the orientation of which remains
fixed to the world frame.

Axis-angles Axis-angle representations describe a rotation as a unit vector
and an angle of rotation about that vector.

Quaternions Quaterions are complex numbers with a real part and three
(instead of the usual one) imaginary parts. They can describe
rotations in a manner that avoids certain problems (e.g. gimbal lock
and ill-conditioned quatities) of other representations and is more
computationally efficient.

The non-quaternion rotation transformations use matrix multiplica-
tion and can therefore have homogeneous forms that include translation.
Quaternions cannot represent translations, so vector-addition must supple-
ment (multiplicative) quaternion transformations.

80 06 June 2020, 18:32:55 06.04 3 3

Chapter 06 ROS basics Lecture 06.04 Coordinate frame transformations

06.04.4 The ROS package tf2

At this point, some things should be clear:

1. for a three-dimensional robot with six degrees of freedom, keeping
track of even two coordinate systems (e.g. world and body-fixed) can
be complicated;

2. adding more coorinate systems for arms, sensors, moving objects in
the environment, etc.—as most real robots require—vastly compli-
cates coordinate transformations;

3. coordinate transformations change with time as body-fixed coordi-
nate systems move; and finally

4. keeping track of all this in an ad hoc way would be disastrous, so a
systematic approach is required.

For these reason, ROS provides just such a systematic approach via its tf2 tf2

package.5,6

The tf2 package has conventions for coordinate transformation data,
organized into a tree structure and buffered in time. Time-buffering is time-buffering

important: frequently, we need not just the latest data, but recent data as
well. As with all ROS dataflow, tf2 communicates via publishing and
subscribing to topics.

ROS tf2 uses quaternions to apply and store rotation information.
However, it is usually easier for us to think in terms of Euler angles.
The older tf package provides a nice conversion from Euler angles to
quaternions:

from tf.transformations import quaternion_from_euler
q = quaternion_from_euler(ax,ay,az) # usage

In the usage example, above, rotation angles (“a”) are applied sequentially
to body-fixed x, y, and z axes.

06.04.5 Try out tf2

In a Terminal window, enter the following to get and compile a turtle tf2
demo.

5The tf2 package documentation can be found here:
wiki.ros.org/tf2

The tf2_ros package provides Python bindings:
wiki.ros.org/tf2_ros

6The tf2 package replaces the older tf package. For information about migrating, see
wiki.ros.org/tf2/Migration

81 06 June 2020, 18:32:55 06.04 3 4

http://wiki.ros.org/tf2
http://wiki.ros.org/tf2_ros
http://wiki.ros.org/tf2/Migration

Chapter 06 ROS basics Lecture 06.04 Coordinate frame transformations

sudo apt-get install \
ros-$ROS_DISTRO-turtle-tf2 \
ros-$ROS_DISTRO-tf2-tools \
ros-$ROS_DISTRO-tf

Now launch the demo with the following command.

roslaunch turtle_tf2 turtle_tf2_demo.launch

A separate screen should load with two turtles. Select the Terminal window
and use the arrow keys to direct one of the turtles about. The other turtle
will follow, as shown in Figure 06.6.

For the full demo, see
wiki.ros.org/tf2/Tutorials/Introduction to tf2

Figure 06.6: a turtle-follow-turtle graphic using tf2.

82 06 June 2020, 18:32:55 06.04 3 5

http://wiki.ros.org/tf2/Tutorials/Introduction to tf2

07

ROS topics

In this chapter, we will learn the details of how to publish to, subscribe to,
and create topics.

Box 07.1 Get the textbook code

Make sure to start with Resource 2, below. It will explain how to
make the code accompanying this text available to your system.

Chapter 07 ROS topics Resource R2

Resource R2 Getting the textbook code

The code we will explore and write together in the following chapters is
available in the following code repository:

github.com/ricopicone/robotics-book-code

Follow the instructions there for downloading and making it available to
your ROS installation.

Box 07.2 It’s going to change

Due to the fact that the code repository is under development and
will likely be updated throughout the term, I recommend using the
git-based method of obtaining the repository and keeping it up-to-
date. Resource 3 is a crash-course on how to get and configure git.

84 06 June 2020, 18:32:55 Resource R2 3 1

http://github.com/ricopicone/robotics-book-code

Chapter 07 ROS topics Resource R3 Installing and configuring git

Resource R3 Installing and configuring git

This resource will help you install and configure git on your machine.
It assumes you are using Ubuntu or some similar OS. It also takes you
through setting up your own git repository for your ROS packages!

Resource R3.1 Installing git

Open a Terminal window. Update aptitude.

sudo apt update

Install git.

sudo apt install git

Check that it is correctly installed.

git --version

git version 2.26.0

The specific version of git isn’t important.

Resource R3.2 Configuring git

Set your name and email.

git config --global user.name "Your Name"
git config --global user.email "youremail@yourdomain.com"

These are stored in ~/.gitconfig. Change them there, as desired.

Resource R3.3 Setting up GitHub

GitHub (github.com) is a place to remotely host a git repository. A
remote host such as this is important for backup, sharing, and collaboration
with git. Create a GitHub account here:

github.com/join

To avoid having to re-enter your GitHub username and password
frequently, consider setting up an SSH key from the following article:

git.io/Jeo3f

85 06 June 2020, 18:32:55 Resource 3 3 1

http://github.com
http://github.com/join
http://git.io/Jeo3f

Chapter 07 ROS topics Resource R3 Installing and configuring git

Resource R3.4 Create your own package repo

You’ll want a repository for your ROS repositories. Create a new repository
in GitHub:

git.io/JeDDp

Consider using the following options.

�3 Initialize this repository with a README1

– Select2 Add .gitignore: ROS

Now you can clone this repo by navigating to it in the web interface and
copying the URL provided by the green Clone or download button.3

Open a Terminal window and cd to a ROS workspace’s src directory.
Clone your remote repo with the following.

git clone <copied repo URL>

If this is successful, you should now have local copy of your repository in
the current directory.

Now set up your package repository with catkin_create_pkg, as
we learned in Lecture 06.02.3.1. Once your package is created, stage your
changes for commit. First, see which files have changed.

git status

Stage all changes for commit.

git add -A # careful with this

Commit changes.

git commit -m 'created a package'

Now we can push these changes up to the remote repo.

git push

1It is a good idea to have a README in every git repository. GitHub makes this easy
and even renders it in a nice format on the website.

2The .gitignore file includes a list of extensions for git to ignore in your repository.
It is convenient that there is a default one for ROS.

3If you have set up SSH, use the SSH URL. Otherwise, use the HTTPS URL.

86 06 June 2020, 18:32:55 Resource R3 3 2

http://git.io/JeDDp

Chapter 07 ROS topics Chapter 07 ROS topics

If it fails, it will probably suggest you set remote as upstream with the
set-upstream option. If so, just copy/paste the suggestion and try it.

You now have a git repository for your ROS packages!

Resource R3.5 Forking the book code repository

Go to this book’s GitHub code repository:
github.com/ricopicone/robotics-book-code

On the upper-right, click the Fork button. This will give you a copy of
the repository in your GitHub account. Now you can clone this fork by
navigating to it in the web interface and copying the URL provided by the
green Clone or download button.4

Open a Terminal window and cd to a ROS workspace’s src directory.
Clone your remote repo with the following.

git clone <copied repo URL>

Follow the directions in the README to use catkin_make to make the
repo packages available to ROS.

Resource R3.6 Updating from the original repo

If you’d like to bring updates to the book’s GitHub repo into your fork, first
add it as an upstream.

git remote add upstream \
https://github.com/ricopicone/robotics-book-code.git # or ssh

Fetch remote branches.

git fetch upstream

Make sure you’re working on your master branch.

git checkout master

Now merge your and my master branches.

git rebase upstream/master

4If you have set up SSH, use the SSH URL. Otherwise, use the HTTPS URL.

87 06 June 2020, 18:32:55 07.00 3 3

http://github.com/ricopicone/robotics-book-code

Chapter 07 ROS topics Lecture 07.01 Publishing to topics

Lecture 07.01 Publishing to topics

New topics must first be registered with big Other roscore, which will
thereafter advertise this topic. In rospy, the syntax is as follows.advertise

pub = rospy.Publisher(<topic name string>,<message_type>)

The first argument is the name of the topic and the second is the messagemessage type

type (all messages on a topic have the same type). This registers the topic
name.

Later, we will learn to create our own message types, but for now
we’ll stick to the standard message types defined by the ROS package
std_msgs. For a list of available message types in std_msgs, seestd_msgs

wiki.ros.org/std_msgs

07.01.1 Creating a simple publisher node

The code accompanying the text has a simple publisher node in the
rico_topics package. You should use catkin_create_pkg to create
a parallel package in your own code repository, as follows.

catkin_create_pkg my_topics \
rospy std_msgs message_runtime message_generation

We’ll need the dependencies listed above. Create a new Python file in
my_topics/src with the following.

touch my_topics/src/topic_publisher.py

Open the empty topic_publisher.py in a text editor. You’ll want to
enter here the same code as appears in the sample topic_publisher.
py from robotics-book-code/rico_topics/src, which is listed in
Figure 07.1.

Since this is the first rospy node we’ve written, it’s worth considering
it in detail. The first line is called a shebang and indicates the file is executableshebang

executable and the relevant interpreter (in this case, python). One more step is
actually required to make your new file executable in Ubuntu: you must
change its permissions to be executable, as follows.permissions

chmod u+x my_topics/src/topic_publisher.py

88 06 June 2020, 18:32:55 07.01 3 1

http://wiki.ros.org/std_msgs

Chapter 07 ROS topics Lecture 07.01 Publishing to topics

1 #!/usr/bin/env python
2 import rospy
3 from std_msgs.msg import Int32 # standard int
4

5 # Setup: initialize node, register topic, set rate
6 rospy.init_node(# initialize node
7 'topic_publisher' # node default name
8)
9 pub = rospy.Publisher(# register topic w/roscore

10 'counter', # topic name
11 Int32, # topic type
12 queue_size=5 # queue size
13)
14 rate = rospy.Rate(2) # adaptive rate in Hz
15

16 # Loop: publish, count, sleep
17 count = 0
18 while not rospy.is_shutdown(): # until ctrl-c
19 pub.publish(count) # publish count
20 count += 1 # increment
21 rate.sleep() # set by rospy.Rate above

Figure 07.1: rico_topics/src/topic_publisher.py listing.

07.01.2 Setting up the node

Back to Figure 07.1, following the shebang, there’s the loading of packages
via Python’s package import mechanism. Note that we’re using both
rospy and std_msgs, which we included in our package.xml when we
used catkin_create_pkg. Then follows the initalization of a ROS node
via rospy.init_node. For more details on initializing nodes, see rospy.init_node

wiki.ros.org/rospy/Overview/Initialization and Shutdown

We then register a topic counter of type Int32 (from std_msgs) and
queue size of 5 via rospy.Publisher. Queue size is how many buffered queue size

rospy.Publishermessages should be stored on the topic. The general guidance is: use more
than you need. For more on selecting queue size, see

wiki.ros.org/rospy/Overview/Publishers and Subscribers

Finally, we use rospy.Rate to specify our desired loop timing. This
powerful mechanism will be used in a moment to adaptively maintain a
looping rate.

89 06 June 2020, 18:32:55 07.01 3 2

http://wiki.ros.org/rospy/Overview/Initialization and Shutdown
http://wiki.ros.org/rospy/Overview/Publishers and Subscribers

Chapter 07 ROS topics Lecture 07.01 Publishing to topics

07.01.3 Publishing to the topic

The while loop in Figure 07.1 is pretty simple: while the node isn’t shut
down,

1. publish the count to topic counter via the publish method of the
object pub created by rospy.Publisher,

2. increment the count, and
3. wait until the sleep method says to iterate.

The Rate object rate can use its sleep method to adaptively attempt to
keep the loop running at the specified rate. This timing mechanism is quite
convenient.

07.01.4 Running and verifying the node

First, we need to catkin_make the workspace to make our new package
available. Navigate (cd) in Terminal to your workspace root directory.

catkin_make

If you have an error involving the Python packages em, yaml, or
catkin_pkg, try installing them with the following.

pip install empy pyyaml catkin_pkg

Once your catkin_make finishes successfully, source the workspace.

source devel/setup.bash

Now open a new Terminal and start a roscore service. Now we can
rosrun the new node!

rosrun my_topics topic_publisher.py

Our node is running! Let’s check the current topics to see if counter is
being advertised. A nice tool for this is rostopic.

rostopic list

90 06 June 2020, 18:32:55 07.01 3 3

Chapter 07 ROS topics Lecture 07.01 Publishing to topics

/counter
/rosout
/rosout_agg

So it is. We can ignore the other topics, which always appear. Let’s see
what is being published to the topic.

rostopic echo counter -n 3

data: 17

data: 18

data: 19

The -n 3 option/value shuts down rostopic after three messages.
Otherwise it would continue until we Ctrl + C .

We can also see how the successful our sleep method is at maintaining
our desired loop rate. (We have to Ctrl + C to stop this one.)

rostopic hz counter

subscribed to [/counter]
average rate: 2.001

min: 0.500s max: 0.500s std dev: 0.00000s window: 2
average rate: 1.999

min: 0.500s max: 0.501s std dev: 0.00051s window: 4
average rate: 2.000

min: 0.498s max: 0.501s std dev: 0.00095s window: 6
average rate: 2.000

min: 0.498s max: 0.501s std dev: 0.00088s window: 7

Not too bad!

91 06 June 2020, 18:32:55 07.01 3 4

Chapter 07 ROS topics Lecture 07.02 Subscribing to topics

Lecture 07.02 Subscribing to topics

Subscribing to topics with rospy involves two steps:

1. defining a callback function that is called every time a message arrivescallback

(on the topics specified in a moment) and
2. registering the subscription with roscore.

The name of the callback function can be anything—say, callback, but
its argument should be handled as a message of the correct type (i.e. the
message type of the topic to which we are subscribing). Registering the
subscription with roscore is accomplished with the Subscribermethod
as follows.

rospy.Subscriber(
<topic name string>, # e.g. 'cool_topic_bro'
<message_type>, # e.g. Int32 from std_msgs
<callback function handle> # e.g. callback

)

The first two arguments are the same as those of rospy.Publisher. The
final argument is simply the name of the callback function from above.

07.02.1 Creating a simple subscriber node

The code accompanying the text has a simple subscriber node in the
rico_topics package. You should use have used catkin_create_pkg
in Lecture 07.01 to create a parallel package in your own code repository—
we’ll call it my_topics. Create a new Python file in my_topics/src with
the following.

touch my_topics/src/topic_subscriber.py # create file
chmod u+x my_topics/src/topic_subscriber.py # make executable

Open the empty topic_subscriber.py in a text editor. You’ll want to
enter here the same code as appears in the sample topic_subscriber.
py from robotics-book-code/rico_topics/src, which is listed in
Figure 07.2.

We see that the callback function definition def callback(msg)
simply prints the message’s data to the Terminal running the node.
The call to to rospy.Subscriber register’s (with roscore) this node’s

92 06 June 2020, 18:32:55 07.02 3 1

Chapter 07 ROS topics Lecture 07.02 Subscribing to topics

1 #!/usr/bin/env python
2 import rospy
3 from std_msgs.msg import Int32
4

5 def callback(msg): # callback for receiving messages
6 print(msg.data) # print to Terminal
7

8 rospy.init_node('topic_subscriber') # initialize node
9

10 sub = rospy.Subscriber('counter', Int32, callback) # subscribe
11

12 rospy.spin() # wait for node to be shut down

Figure 07.2: rico_topics/src/topic_subscriber.py listing.

subscription to the topic 'counter', with its message type Int32, and
directs messages to the callback function callback, just defined.

Finally, there’s a call to rospy.spin. This function here acts to keep the
node running (so it can receive messages) until it is explicitly shut down.
It’s doing something like the following.

while not rospy.core.is_shutdown():
rospy.rostime.wallsleep(0.5) # seconds

07.02.2 Running and verifying the node

Now that we have created my_topics/src/topic_subscriber.py,
we need to catkin_make and source our workspace.

cd ros_ws_01 # if needed

catkin_make

Now we can source our workspace.

source devel/setup.bash

Now, make sure you’ve started a roscore service running. If not, start
it with the following.

93 06 June 2020, 18:32:55 07.02 3 2

Chapter 07 ROS topics Lecture 07.02 Subscribing to topics

roscore

Also make sure you still have the topic_publisher.py node run-
ning. If not, start it with the following.

rosrun my_topics topic_publisher.py

And now we’re ready to launch the new topic_subscriber.py
node.

rosrun my_topics topic_subscriber.py

100
101
102

The terminal prints the counter, as expected. To see who’s publishing
and subscribing to counter, we can use rostopic as follows.

rostopic info counter

Type: std_msgs/Int32

Publishers:

* /topic_publisher (http://socrates:35309/)

Subscribers:

* /topic_subscriber (http://socrates:40387/)

Just as we expected: topic_publisher is publishing to and
topic_subscriber is subscribed to the topic counter.

07.02.3 Latched topics

Sometimes a topic will have messages published so infrequently that it
could be problematic if a subscriber misses a message because it was not-yet
subscribed to the topic. In this case, we can publish a latched topic, whichlatched topic

makes it so that every new subscriber gets the last message published to
the topic. Latched topics are created with the rospy.Publisher named
argument latched=True, which is by default False.

94 06 June 2020, 18:32:55 07.02 3 3

Chapter 07 ROS topics Lecture 07.03 Custom messages

Table 07.1: built-in ROS field- and constant-types for messages.

type serialization C++ Python 2/3

bool unsigned 8-bit int uint8_t bool
int8 signed 8-bit int int8_t int
uint8 unsigned 8-bit int uint8_t int
int16 signed 16-bit int int16_t int
uint16 unsigned 16-bit int uint16_t int
int32 signed 32-bit int int32_t int
uint32 unsigned 32-bit int uint32_t int
int64 signed 64-bit int int64_t long/int
uint64 unsigned 64-bit int uint64_t long/int
float32 32-bit IEEE float float float
float64 64-bit IEEE float double float
string ascii string std::string str/bytes
time sec/nsec unsigned 32-bit int ros::Time rospy.Time
duration sec/nsec signed 32-bit int ros::Duration rospy.Duration

Lecture 07.03 Custom messages

The messages that come in the std_msgs should be exhausted before
considering the specification of a new message description: a line-separated message

descriptionlist of field type-name pairs and constant type-name-value triples. For
field
constant

example, the following is a message description with two fields and a
constant.

int32 x # field type: int32, name: x
float32 y # field type: float32, name: y
int32 Z # constant type: int32, name: Z

The field- and constant-types are usually ROS built-in types, which are
shown in Table 07.1. Other field- and constant-types are possible, as
described in the documentation:

wiki.ros.org/msg

Of particular interest are arrays of built-in types, like the variable-length
array of integers int32[] foo, which is interpreted as a Python tuple.

To use a custom message description, create a .msg file in the subdi- .msg file

rectory <package>/msg/ (you may need to create the subdirectory) and
enter your message description.

95 06 June 2020, 18:32:55 07.03 3 1

http://wiki.ros.org/msg

Chapter 07 ROS topics Lecture 07.03 Custom messages

07.03.1 An example message description

In this section, we develop a custom message description Complex in
msg/Complex.msg for messages with a real and an imaginary floating-
point number. We continue to build on the package we’ve been creating
in this chapter, my_topics, which shadows the package included with the
book, rico_topics.

The first thing when creating a custom message description is to create
the message description file.

07.03.1.1 Creating a message description

From your package root, create it with the following.

mkdir msg
touch msg/Complex.msg

Now we can edit the contents of Complex.msg to include the follow-
ing.

float32 real
float32 imaginary

Both field types are float32 and have field names real and imaginary.
We are now ready to update the build-system

07.03.1.2 Updating the build-system configuration

The package we’ve been working on in this chapter, my_topics, was
created with a bit of forethought: we included as dependencies in
our catkin_create_pkg call the packages message_runtime and
message_generation. If we hadn’t had such foresight, we would
have to make several changes in our package’s package.xml and
CMakeLists.txt files before proceeding to create our own message
description. As it stands, we still need to make a few changes to them.

How we need to change package.xml
Including message_runtime and message_generation in

our catkin_create_pkg call yielded the following lines in our
package.xml, which would otherwise need to be added manually.

96 06 June 2020, 18:32:55 07.03 3 2

Chapter 07 ROS topics Lecture 07.03 Custom messages

<build_depend>message_generation</build_depend>
<exec_depend>message_runtime</exec_depend>

However, we still need to add message_runtime as a <build_depend>.

<build_depend>message_runtime</build_depend>

How we need to change CMakeLists.txt
Including message_runtime and message_generation in

our catkin_create_pkg call yielded the following lines in our
CMakeLists.txt, which would otherwise need to be added manually.
As an additional line in the find_package(...) block, we would need
the following.

message_generation

The rest of the changes we do need to make manually. As an additional
line in the catkin_package(...) block, we need the following.

CATKIN_DEPENDS message_runtime

The add_message_files(...) block needs uncommented and
edited to appear as follows.

add_message_files(
FILES
Complex.msg

)

We have already created the Complex.msg file.
Finally, the generate_messages(...) block needs to be uncom-

mented such that it appears as follows.

generate_messages(
DEPENDENCIES
std_msgs

)

Now our package is set up to use the message type Complex—or, it
will be once we catkin_make our workspace. First, let’s write a simple
publisher and subscriber to try it out.

97 06 June 2020, 18:32:55 07.03 3 3

Chapter 07 ROS topics Lecture 07.03 Custom messages

1 #!/usr/bin/env python
2 import rospy
3 from rico_topics.msg import Complex # custom message type
4 from random import random # for random numbers!
5

6 rospy.init_node('message_publisher') # initialize node
7

8 pub = rospy.Publisher(# register topic
9 'complex', # topic name

10 Complex, # custom message type
11 queue_size=3 # queue size
12)
13

14 rate = rospy.Rate(2) # set rate
15

16 while not rospy.is_shutdown(): # loop
17 msg = Complex() # declare type
18 msg.real = random() # assign value
19 msg.imaginary = random() # assign value
20

21 pub.publish(msg) # publish!
22 rate.sleep() # sleep to keep rate

Figure 07.3: rico_topics/src/message_publisher.py listing.

07.03.1.3 Writing a publisher and subscriber

We can now write a publisher and subscriber that publish and subscribe
to messages with type Complex. Create (touch) a Python node file
my_topics/src/message_publisher.py, change its permissions to
user-executable (chmod u+x), and edit it to have the same contents as the
rico_topics/src/message_publisher.py file shown in Figure 07.3.

Repeat a similar process to create a my_topics/src/
message_subscriber.py with the same contents as the
rico_topics/src/message_subscriber.py file shown in
Figure 07.4.

07.03.1.4 Running and verifying these nodes

Let’s try it out. Navigate to your workspace root and build your workspace.

catkin_make

98 06 June 2020, 18:32:55 07.03 3 4

Chapter 07 ROS topics Lecture 07.03 Custom messages

1 #!/usr/bin/env python
2 import rospy
3 from rico_topics.msg import Complex
4

5 def callback(msg):
6 print 'Real:', msg.real # print real part
7 print 'Imaginary:', msg.imaginary # print imag part
8 print # blank line
9

10 rospy.init_node('message_subscriber') # initialize node
11

12 sub = rospy.Subscriber(# register subscription
13 'complex', # topic
14 Complex, # custom type
15 callback # callback function
16)
17

18 rospy.spin() # keep node running until shut down

Figure 07.4: rico_topics/src/message_subscriber.py listing.

Fire up a roscore. In a new Terminal, in your workspace root,
source devel/setup.bash then run the publisher node.

rosrun my_topics message_publisher.py

In another new Terminal, in your workspace root, again
source devel/setup.bash then run the subscriber node.

rosrun my_topics message_subscriber.py

Real: 0.308157861233
Imaginary: 0.229206711054

Real: 0.121079094708
Imaginary: 0.568501293659

Real: 0.807860195637
Imaginary: 0.486804276705

It works! Random complex numbers are being printed by the
message_subscriber.py node.

99 06 June 2020, 18:32:55 07.03 3 5

Chapter 07 ROS topics Lecture 07.04 Other considerations

Lecture 07.04 Other considerations

ROS topics have hardly been exhausted, and this will remain true even after
we consider a few more aspects of special note.

07.04.1 The rosmsg command

The rosmsg command comes with the rosbash package already installed.
It allows us to explore which messages are described and their descriptions.

As always, we need to navigate to our workspace.

cd ros_ws_01

Then source it!

source devel/setup.bash

The show option lists message descriptions. Even our Complex custom
definition can be listed in this way.

rosmsg show Complex

[rico_topics/Complex]:
float32 real
float32 imaginary

[my_topics/Complex]:
float32 real
float32 imaginary

This is how we could see the message description of a geometry_msgs
message Point.

rosmsg show geometry_msgs/Point

float64 x
float64 y
float64 z

The package option lets us list those messages defined in a given
package.

100 06 June 2020, 18:32:55 07.04 3 1

Chapter 07 ROS topics Lecture 07.04 Other considerations

rosmsg package my_topics

my_topics/Complex

For the tf2_msgs package, which groups the Error and Transform
messages for tf2_ros, several message definitions are provided.

rosmsg package tf2_msgs

tf2_msgs/LookupTransformAction
tf2_msgs/LookupTransformActionFeedback
tf2_msgs/LookupTransformActionGoal
tf2_msgs/LookupTransformActionResult
tf2_msgs/LookupTransformFeedback
tf2_msgs/LookupTransformGoal
tf2_msgs/LookupTransformResult
tf2_msgs/TF2Error
tf2_msgs/TFMessage

The list option lists all messages available to ROS.

rosmsg list

We have suppressed the output, which is long.

07.04.2 Publishing and subscribing in the same node

Why not? This is actually rather common. Consider the example
node robotics-book-code/rico_topics/doubler.py, listed in
Figure 07.5. This node subscribes to topic number, multiplies the received
msg.data (an Int32) by two, and publishes the result (an Int32) to
topic doubled.

Perhaps the most interesting aspect of this is that, instead of publishing
at some set rate, the publishing happens inside the callback. This means a
new message will be published to doubled right after a new message is
published to topic number. This is frequently the most desirable behavior.

101 06 June 2020, 18:32:55 07.04 3 2

Chapter 07 ROS topics Lecture 07.04 Other considerations

1 #!/usr/bin/env python
2 import rospy
3 from std_msgs.msg import Int32
4

5 rospy.init_node('doubler') # initialize node
6

7 def callback(msg):
8 doubled = Int32() # declare
9 doubled.data = msg.data * 2 # double

10 pub.publish(doubled) # publish in callback!
11

12 sub = rospy.Subscriber('number', Int32, callback)
13 pub = rospy.Publisher('doubled', Int32, queue_size=3)
14

15 rospy.spin() # keep node running until shut down

Figure 07.5: rico_topics/src/doubler.py listing.

102 06 June 2020, 18:32:55 07.04 3 3

08

ROS services

Chapter 08 ROS services Lecture 08.01 Introducing ROS services

Lecture 08.01 Introducing ROS services

A ROS service is effectively a function one node (the server) provides to otherservices
server nodes (the clients).
clients

Box 08.1 i can haz service? a script

Pretty much, if we have Node A [server] and Node B [client]:
Node A: “Yo I can do X service [registers a service],”
Node B: “Node A, do X for me plz? [requests service]” and waits
Node A: does X [service occurs]
Node A: sends Node B the result of doing X [server returns values]
Node B: “thnks fam” [I just assume this happens].

A key aspect to services is that they are synchronous: a client waits, doingsynchronous

nothing else, while the server “services” it. So obviously this only works
well for tasks that take a limited amount of time, such as:

1. getting a sensor value,
2. setting a parameter, or
3. performing a computation.

08.01.1 An example service type definition

In this section, we develop a custom service type definition WordCount
in srv/WordCount.srv for a service that has as input a string and as
output the number of words in that string. We create a new package for
this chapter, my_services, which shadows the package included with the
book, rico_services. So use, in your workspace’s src directory, use
catkin_create_pkg to create a package, as follows.

catkin_create_pkg my_services \
roscpp rospy message_generation message_runtime

The first thing when creating a custom service definition is to create the
service definition file.

08.01.1.1 Creating a service definition

From your package root, create it with the following.

104 06 June 2020, 18:32:55 08.01 3 1

Chapter 08 ROS services Lecture 08.01 Introducing ROS services

mkdir srv # traditional directory for service definitions
touch srv/WordCount.srv

Now we can edit the contents of WordCount.srv to include the
following.

string words

uint32 count

Above the delimiter “---” are input field types and names and below the input field

delimiter are output field types and names. output field

We are now ready to update the build-system.

08.01.1.2 Updating the build-system configuration

The package we’re creating in this chapter, my_services, was
created with a bit of forethought: we included as dependencies in
our catkin_create_pkg call the packages message_runtime and
message_generation. If we hadn’t had such foresight, we would
have to make several changes in our package’s package.xml and
CMakeLists.txt files before proceeding to create our own message
description. As it stands, we still need to make a few changes to them.

How we need to change package.xml
Including message_runtime and message_generation in

our catkin_create_pkg call yielded the following lines in our
package.xml, which would otherwise need to be added manually.

<build_depend>message_generation</build_depend>
<exec_depend>message_runtime</exec_depend>

However, we still need to add message_runtime as a <build_depend>.

<build_depend>message_runtime</build_depend>

How we need to change CMakeLists.txt
Including message_runtime and message_generation in

our catkin_create_pkg call yielded the following lines in our
CMakeLists.txt, which would otherwise need to be added manually.

105 06 June 2020, 18:32:55 08.01 3 2

Chapter 08 ROS services Lecture 08.01 Introducing ROS services

As an additional line in the find_package(...) block, we would need
the following.

message_generation

The rest of the changes we do need to make manually. The
add_service_files(...) block needs uncommented and edited to
appear as follows.

add_service_files(
FILES
WordCount.srv

)

We have already created the WordCount.srv file.
Finally, the generate_messages(...) block needs to be uncom-

mented such that it appears as follows.

generate_messages(
DEPENDENCIES
std_msgs

)

Now our package is set up to use the service type WordCount—or, it
will be once we catkin_make our workspace. (Go ahead and do so now.)

08.01.1.3 See it with rossrv

The package rosmsg (already installed) includes the command rossrv,
which gives information about services.

rossrv

rossrv is a command-line tool for displaying information about ROS
Service types.↪→

Commands:
rossrv show Show service description
rossrv info Alias for rossrv show
rossrv list List all services
rossrv md5 Display service md5sum
rossrv package List services in a package
rossrv packages List packages that contain services

We could try it on our new service type WordCount as follows.

rossrv show WordCount

106 06 June 2020, 18:32:55 08.01 3 3

Chapter 08 ROS services Lecture 08.01 Introducing ROS services

[my_services/WordCount]:
string words

uint32 count

[rico_services/WordCount]:
string words

uint32 count

So the WordCount service type is available in both packages
rico_services and my_services. We have successfully created a
service type! In Lecture 08.02, we’ll learn to serve and call this service type.

107 06 June 2020, 18:32:55 08.01 3 4

Chapter 08 ROS services Lecture 08.02 Serving and calling a ROS service

Lecture 08.02 Serving and calling a ROS service

Creating a server node is our first consideration.server node

08.02.1 Creating a server node

Here are some key aspects of a rospy server, listed below as instructions
for creating such a node.

1. Import the service type and its Response function:
from <pkg>.srv import <srv_type> <srv_type>Response.

2. Define a function to serve:
def fun(request).

3. Register a service:
rospy.Service(<srv_name>,<srv_type>,<fun>).

4. Wait for service requests: rospy.spin().

The service function can return:

1. a <srv_type>Response object:
return <srv_type>Response(<value1>,<value2>,...) or

2. a single value (matching a single service output type):
return <value> or

3. a list of values (matching the output types):
return [<value1>,<value2>,...] or

4. a dictionary of values (matching the output names and types):
return {'name1':<value1>,'name2':<value2>}.

08.02.2 An example server node

Let’s implement our new service word_count, created in Lecture 08.01.
We need a server node to do so. Create (touch) a Python node file my_
services/src/service_server.py, change its permissions to user-
executable (chmod u+x), and edit it to have the same contents as the
rico_services/src/service_server.py file shown in Figure 08.1.

08.02.3 Creating a client node

The key elements to creating a client node are:client node

1. Import the service:
from <pkg>.srv import <srv_type>.

108 06 June 2020, 18:32:55 08.02 3 1

Chapter 08 ROS services Lecture 08.02 Serving and calling a ROS service

1 #!/usr/bin/env python
2 import rospy
3 from rico_services.srv import WordCount, WordCountResponse
4

5 def count_words(request):
6 return len(request.words.split()) # num of words
7

8 rospy.init_node('service_server')
9

10 service = rospy.Service(# register service
11 'word_count', # service name
12 WordCount, # service type
13 count_words # function service provides
14)
15

16 rospy.spin()

Figure 08.1: rico_services/src/service_server.py listing.

2. Wait for a service:
rospy.wait_for_service('service_name').

3. Set up a proxy server for communication:
rospy.ServiceProxy(<srv_name>,<srv_type>).

4. Use the service: fun(...).

08.02.4 An example client node

Let’s create a client for our new service word_count. We need
a client node to do so. Create (touch) a Python node file
my_services/src/service_client.py, change its permis-
sions to user-executable (chmod u+x), and edit it to have the same
contents as the rico_services/src/service_client.py file shown
in Figure 08.2.

The only thing that may surprise us here is the line
words = ' '.join(sys.argv[1:]). The inner statement
sys.argv[1:] returns a list of command-line arguments supplied to
the node. Then ' '.join(...) concatenates the (string) elements of
the list with a space character between each pair. This is one of many ways
we could parse command-line arguments. argument parsing

109 06 June 2020, 18:32:55 08.02 3 2

Chapter 08 ROS services Lecture 08.02 Serving and calling a ROS service

1 #!/usr/bin/env python
2 import rospy
3 from rico_services.srv import WordCount
4 import sys
5

6 rospy.init_node('service_client')
7

8 rospy.wait_for_service('word_count') # wait for registration
9 word_counter = rospy.ServiceProxy(# set up proxy

10 'word_count', # service name
11 WordCount # service type
12)
13 words = ' '.join(sys.argv[1:]) # parse args
14 word_count = word_counter(words) # use service
15

16 print(words+'--> has '+str(word_count.count)+' words')

Figure 08.2: rico_services/src/service_client.py listing.

08.02.5 Running and verifying the server and client nodes

Navigate to your workspace root and build the workspace.

catkin_make

Run a roscore. In a new Terminal, in your workspace root,
source devel/setup.bash, then run the server node.

rosrun my_services service_server.py

In a new Terminal, in your workspace root, source devel/setup.bash,
then run the client node with command line arguments passed.

rosrun my_services service_client.py hello world sweet world

hello world sweet world--> has 4 words

It works!

110 06 June 2020, 18:32:55 08.02 3 3

09

ROS actions

Chapter 09 ROS actions Lecture 09.01 Introducing ROS actions

Lecture 09.01 Introducing ROS actions

A ROS action is effectively a function one node (the action server) asyn-actions
action server

asynchronicity
chronously provides to other nodes (the clients). Note this is just like service,

clients
but with the asynchronicity of a topic. Like a service, an action has a goal

goals
and a result; but unlike a service, an action also provides feedback during ex-

results
feedback

ecution. This makes actions more suitable for goal-oriented tasks that take
time, such as:

1. navigating to a location,
2. performing a complex manipulation, or
3. performing a long calculation.

09.01.1 An example action type definition

In this section, we develop a custom action type definition Timer in
action/Timer.action for an action that has as

input a duration to wait time_to_wait;
output a total actual duration waited time_elapsed and a total

uint32 number of feedback updates sent updates_sent; and
feedback a duration waited so far time_elapsed and a duration left

to wait time_remaining.

Box 09.1 why a timer though

The Timer action is for demonstration purposes only and shouldn’t
be used to implement timing in a ROS graph. For timing, use
rospy.sleep().

We create a new package for this chapter, my_actions, which shad-
ows the package included with the book, rico_actions. So, in your
workspace’s src directory, use catkin_create_pkg to create a package,
as follows.

catkin_create_pkg my_actions roscpp rospy actionlib_msgs

The first thing when creating a custom action definition is to create the
action definition file.action definition

file

112 06 June 2020, 18:32:55 09.01 3 1

Chapter 09 ROS actions Lecture 09.01 Introducing ROS actions

09.01.1.1 Creating an action definition

From your package root, create it with the following.

mkdir action
touch action/Timer.action

Now we can edit the contents of Timer.action to include the follow-
ing.

inputs
duration time_to_wait

outputs
duration time_elapsed
uint32 updates_sent

feedback
duration time_elapsed
duration time_remaining

Above the first delimiter “---” are input field types and names; between the input field

delimiters are output field types and names; and after the second delimiter output field

are feedback field types and names. feedback field

We are now ready to update the build-system.

09.01.1.2 Updating the build-system configuration

The package we’re creating in this chapter, my_actions, was cre-
ated with a bit of forethought: we included as dependencies in our
catkin_create_pkg call the package actionlib_msgs for creating
actions. If we hadn’t had such foresight, we would have to make several
changes in our package’s package.xml and CMakeLists.txt files
before proceeding to create our own message description. As it stands, we
still need to make a few changes to them.

How we would have had to change package.txt
Including actionlib_msgs in our catkin_create_pkg call yielded

the following lines in our package.xml, which would otherwise need to
be added manually.

<build_depend>actionlib_msgs</build_depend>
<build_exec_depend>actionlib_msgs</build_exec_depend>
<exec_depend>actionlib_msgs</exec_depend>

113 06 June 2020, 18:32:55 09.01 3 2

Chapter 09 ROS actions Lecture 09.01 Introducing ROS actions

How we need to change CMakeLists.txt
Including actionlib_msgs in our catkin_create_pkg call yielded

the following lines in our CMakeLists.txt, which would otherwise need
to be added manually. As an additional line in the find_package(...)
block, we would need the following.

actionlib_msgs

The rest of the changes we do need to make manually. The
add_action_files(...) block needs uncommented and edited to
appear as follows.

add_action_files(
DIRECTORY action
FILES Timer.action

)

We have already created the Timer.action file.
The generate_messages(...) block needs to be uncommented and

actionlib_msgs added such that it appears as follows.

generate_messages(
DEPENDENCIES
actionlib_msgs
std_msgs

)

Finally, the catkin_package block also needs uncommented and
actionlib_msgs added such that it appears as follows.

catkin_package(
CATKIN_DEPENDS
actionlib_msgs

)

Now our package is set up to use the action type Timer—or, it will
be once we catkin_make our workspace. (Go ahead and do so now.)
As before with services, catkin_make will take our action definition and
create several message definition .msg files. This highlights the fact that an
action communicates via services.

We have successfully created an action type! In Lecture 09.02, we’ll
learn to serve and call this action type.

114 06 June 2020, 18:32:55 09.01 3 3

Chapter 09 ROS actions Lecture 09.02 Serving and calling a ROS action

Lecture 09.02 Serving and calling a ROS action

Creating an action server node is our first consideration. action server node

09.02.1 Creating an action server node

Here are some key aspects of a rospy action server, listed below as
instructions for creating such a node.

1. Import the Python package actionlib:
import actionlib

2. Import the action’s generated message types:
from <pkg>.msg import <action_type>Action, \
<action_type>Goal, <action_type>Result, <action_type>Feedback

3. Define an action function to serve:
def do_action(goal):

a) Check for errors in client request and abort with result if neces-
sary:
result = <action_type>Result() # create result object
result.<field_name> = <field_value> # set result(s)
server.set_aborted(result,"An abort message")

b) While goal isn’t yet met, do the following in a timed loop.
i. Check for client request to preemptively abort goal and

abort with result if necessary:
if server.is_preempt_requested():

result = <action_type>Result() # create result obj
server.set_preempted(result,"Preempted abort msg")
return

ii. Set and publish feedback:
feedback = <action_type>Feedback() # create fdbck obj
feedback.<field_name> = <field_value> # set feedback
server.publish_feedback(feedback) # publish feedback

c) When goal is met, publish the result:
result = <action_type>Result() # create result object
result.<field_name> = <field_value> # set result(s)
server.set_succeeded(result,"A success message")

4. Register an action:
server = actionlib.SimpleActionServer(
'server_name', # server name string
<action_type>Action, # action Action message type

115 06 June 2020, 18:32:55 09.02 3 1

Chapter 09 ROS actions Lecture 09.02 Serving and calling a ROS action

do_action, # action function
False # autostart server? always set to False

)

5. Start the action and wait for requests:
server.start()
rospy.spin()

09.02.2 An example action server node

Let’s implement our new action Timer, created in Lecture 09.01. We
need an action server node to do so. Create (touch) a Python node file
my_actions/src/fancy_action_server.py, change its permissions
to user-executable (chmod u+x), and edit it to have the same contents
as the rico_services/src/fancy_action_server.py file shown in
Figure 09.1 (be sure to change rico_actions to my_actions).

116 06 June 2020, 18:32:55 09.02 3 2

Chapter 09 ROS actions Lecture 09.02 Serving and calling a ROS action

1 #! /usr/bin/env python
2 import rospy
3 import time # for regular Python timing
4 import actionlib # for actions!
5 from rico_actions.msg import \
6 TimerAction, TimerGoal, TimerResult, TimerFeedback
7

8 def do_timer(goal): # action function
9 start_time = time.time()

10 update_count = 0
11 if goal.time_to_wait.to_sec() > 60.0: # check req duration
12 result = TimerResult()
13 result.time_elapsed = rospy.Duration.from_sec(
14 time.time() - start_time)
15 result.updates_sent = update_count
16 server.set_aborted(result, "Aborted: too long to wait")
17 return # too long of a requested wait
18 while (time.time()-start_time) < goal.time_to_wait.to_sec():
19 # waiting to meet goal duration
20 if server.is_preempt_requested(): # check preemption
21 result = TimerResult()
22 result.time_elapsed = rospy.Duration.from_sec(
23 time.time() - start_time)
24 result.updates_sent = update_count
25 server.set_preempted(result, "Timer preempted")
26 return
27 feedback = TimerFeedback()
28 feedback.time_elapsed = rospy.Duration.from_sec(
29 time.time() - start_time)
30 feedback.time_remaining = \
31 goal.time_to_wait - feedback.time_elapsed
32 server.publish_feedback(feedback)
33 update_count += 1
34 time.sleep(1.0)
35 result = TimerResult()
36 result.time_elapsed = rospy.Duration.from_sec(
37 time.time() - start_time)
38 result.updates_sent = update_count
39 server.set_succeeded(result, "Timer completed successfully")
40

41 rospy.init_node('timer_action_server') # initialize node
42 server = actionlib.SimpleActionServer(
43 'timer', TimerAction, do_timer, False
44)
45 server.start()
46 rospy.spin()

Figure 09.1: rico_actions/src/fancy_action_server.py listing.

117 06 June 2020, 18:32:55 09.02 3 3

Chapter 09 ROS actions Lecture 09.02 Serving and calling a ROS action

09.02.3 Creating an action client node

The key elements to creating an action client node are:action client node

1. Import the Python package actionlib:
import actionlib

2. Import the action’s generated message types:
from <pkg>.msg import <action_type>Action, \
<action_type>Goal, \
<action_type>Result, \
<action_type>Feedback

3. Define a feedback callback function:
def feedback_cb(feedback):

Do whatever you like with the feedback in here.
4. Register an action client and wait for server connection:

client = actionlib.SimpleActionClient(
'server_name', # action server name
<action_type>Action # action Action message

)
client.wait_for_server()

5. Define and send goal to server:
goal = <action_type>Goal()
goal.<field_name> = <field_value> # set goal field(s)
client.send_goal(goal, feedback_cb=feedback_cb) # send to

6. Wait for results, then do what you like with them:
client.wait_for_result()

09.02.4 An example action client node

Let’s create a client for our new action Timer. We need
a client node to do so. Create (touch) a Python node file
my_actions/src/fancy_action_client.py, change its per-
missions to user-executable (chmod u+x), and edit it to have the same
contents as the rico_actions/src/fancy_action_client.py file
shown in Figure 09.2 (be sure to change rico_actions to my_actions).

09.02.5 Launching and verifying the server and client nodes

Let’s make a launch file for our action server and client nodes. Navigatelaunch file

to your my_actions directory and create (touch) a file fancy_action.
launch. Now edit it to include the contents shown in Figure 09.3.

118 06 June 2020, 18:32:55 09.02 3 4

Chapter 09 ROS actions Lecture 09.02 Serving and calling a ROS action

1 #! /usr/bin/env python
2 import rospy
3 import time # for regular Python timing
4 import actionlib # for actions!
5 from rico_actions.msg import \
6 TimerAction, TimerGoal, TimerResult, TimerFeedback
7

8 def the_feedback_cb(feedback): # feedback callback function
9 print('[Feedback] Time elapsed: %f' %

10 (feedback.time_elapsed.to_sec()))
11 print('[Feedback] Time remaining: %f' %
12 (feedback.time_remaining.to_sec()))
13

14 rospy.init_node('timer_action_client') # initialize node
15 client = actionlib.SimpleActionClient(# register client
16 'timer', # action server name
17 TimerAction # action Action message
18)
19 client.wait_for_server() # wait for action server
20 goal = TimerGoal() # create goal object
21 goal.time_to_wait = rospy.Duration.from_sec(5.0) # set field
22 # Uncomment this line to test server-side abort:
23 # goal.time_to_wait = rospy.Duration.from_sec(500.0)
24

25 client.send_goal(goal, feedback_cb=the_feedback_cb) # send goal
26 # Uncomment these lines to test goal preemption:
27 # time.sleep(3.0)
28 # client.cancel_goal()
29

30 client.wait_for_result() # wait for action server to finish
31 # print results:
32 print('[Result] State: %d' % (client.get_state()))
33 print('[Result] Status: %s' % (client.get_goal_status_text()))
34 if client.get_result():
35 print('[Result] Time elapsed: %f' %
36 (client.get_result().time_elapsed.to_sec()))
37 print('[Result] Updates sent: %d' %
38 (client.get_result().updates_sent))

Figure 09.2: rico_actions/src/fancy_action_client.py listing.

119 06 June 2020, 18:32:55 09.02 3 5

Chapter 09 ROS actions Lecture 09.02 Serving and calling a ROS action

<launch>
<node name="server" pkg="my_actions"

type="fancy_action_server.py" output="screen"/>↪→
<node name="client" pkg="my_actions"

type="fancy_action_client.py" output="screen"/>↪→
</launch>

Figure 09.3: code listing for launch file fancy_action.launch.

Navigate to your workspace root and build the workspace.

catkin_make

Source your workspace: source devel/setup.bash. Now launch the
ROS graph with the following.

roslaunch my_actions fancy_action.launch

... logging to /home/socrates/.ros/log/....log
Checking log directory for disk usage. This may take a while.
Press Ctrl-C to interrupt
Done checking log file disk usage. Usage is <1GB.
started roslaunch server http://socrates:44495/
SUMMARY
========
PARAMETERS

* /rosdistro: melodic

* /rosversion: 1.14.5
NODES
/
client (rico_actions/fancy_action_client.py)
server (rico_actions/fancy_action_server.py)

auto-starting new master
process[master]: started with pid [9827]
ROS_MASTER_URI=http://localhost:11311
setting /run_id to 9f2db0a0-8c0f-11ea-a1ae-0800272f9db4
process[rosout-1]: started with pid [9838]
started core service [/rosout]
process[server-2]: started with pid [9845]
process[client-3]: started with pid [9846]
[Feedback] Time elapsed: 0.000013
[Feedback] Time remaining: 4.999987
[Feedback] Time elapsed: 1.002952
[Feedback] Time remaining: 3.997048

120 06 June 2020, 18:32:55 09.02 3 6

Chapter 09 ROS actions Lecture 09.02 Serving and calling a ROS action

[Feedback] Time elapsed: 2.008340
[Feedback] Time remaining: 2.991660
[Feedback] Time elapsed: 3.017035
[Feedback] Time remaining: 1.982965
[Feedback] Time elapsed: 4.022336
[Feedback] Time remaining: 0.977664
[Result] State: 3
[Result] Status: Timer completed successfully
[Result] Time elapsed: 5.028862
[Result] Updates sent: 5
[client-3] process has finished cleanly
log file: /home/socrates/.ros/log/....log

We see the feedback printing as expected, along with the final results. The
resulting goal status, accessed by client.get_goal_status_text(),
is 'Timer completed successfully'.

09.02.6 More actionlib documentation

The core of what we have used to construct our action server and client is
the actionlib ROS package:

wiki.ros.org/actionlib

The rospy (Python) library API is here for the SimpleActionServer
class:

ricopic.one/redirect/SimpleActionServer

And here for the SimpleActionClient class:
ricopic.one/redirect/SimpleActionClient

121 06 June 2020, 18:32:55 09.02 3 7

http://wiki.ros.org/actionlib
http://ricopic.one/redirect/SimpleActionServer
http://ricopic.one/redirect/SimpleActionClient

Part III

Open-loop control with ROS

Part IV

Closed-loop control with ROS

Part V

Control architectures with ROS

Chapter 09 ROS actions Lecture 09.02 Serving and calling a ROS action

Start with (Koubaa, 2017, pp. 124-5). Koubaa (2020, 2018, 2017, 2016)

129 06 June 2020, 18:32:55 09.02 3 15

10

Bibliography

A. Agarwal and J. Lang. Foundations of Analog and Digital Electronic Circuits.
The Morgan Kaufmann Series in Computer Architecture and Design.
Elsevier Science, 2005. ISBN 9780080506814. URL https://books.

google.com/books?id=lGgP7FDEv3AC.

R.C. Arkin, R.P.D.M.R.L.R.C. Arkin, M.I.T. Press, and R.C. Arkin. Behavior-
based Robotics. Bradford book. MIT Press, 1998. ISBN 9780262011655.
URL https://books.google.com/books?id=mRWT6alZt9oC.

Richard C. Booton and Simon Ramo. The development of systems engi-
neering. IEEE Transactions on Aerospace and Electronic Systems, AES–20:
306–9, July 1984.

William L Brogan. Modern Control Theory. Prentice Hall, third edition, 1991.

Rodney A. Brooks. Cambrian Intelligence: The Early History of the New AI.
A Bradford book. BRADFORD BOOK, 1999. ISBN 9780262522632. URL
https://books.google.com/books?id=btvRZ5rj51EC.

Francesco Bullo and Andrew D. Lewis. Geometric control of mechanical
systems: modeling, analysis, and design for simple mechanical control systems.
Springer, 2005.

E. Charniak. Introduction to Deep Learning. Mit Press. MIT Press, 2019. ISBN
9780262039512.

Matthew F. Hale, Edgar Buchanan, Alan F. Winfield, Jon Timmis, Emma
Hart, Agoston E. Eiben, Mike Angus, Frank Veenstra, Wei Li, Robert

https://books.google.com/books?id=lGgP7FDEv3AC
https://books.google.com/books?id=lGgP7FDEv3AC
https://books.google.com/books?id=mRWT6alZt9oC
https://books.google.com/books?id=btvRZ5rj51EC

Chapter 10 Bibliography Chapter 10 Bibliography

Woolley, Matteo De Carlo, and Andy M. Tyrrell. The are robot fabricator:
How to (re)produce robots that can evolve in the real world. Artificial Life
Conference Proceedings, (31):95–102, 2019. doi: 10.1162/isal_a_00147.
URL https://www.mitpressjournals.org/doi/abs/10.1162/isal_

a_00147.

Guy Hoffman and Cynthia Breazeal. Collaboration in Human-Robot Teams.
American Institute of Aeronautics and Astronautics, 2004. doi: 10.
2514/6.2004-6434. URL https://arc.aiaa.org/doi/abs/10.2514/6.

2004-6434.

P Horowitz and W Hill. The Art of Electronics. Cambridge University Press,
2015. ISBN 9780521809269. URL https://books.google.com/books?

id=LAiWPwAACAAJ.

Anis Koubaa, editor. Robot Operating System (ROS): The Complete Refer-
ence (Volume 1). Studies in Computational Intelligence 625. Springer
International Publishing, 1 edition, 2016. ISBN 978-3-319-26052-5,978-
3-319-26054-9. URL http://gen.lib.rus.ec/book/index.php?md5=

f914a41247978eb9baf42bfce070cca4.

Anis Koubaa, editor. Robot Operating System (ROS): The Complete Refer-
ence (Volume 2). Studies in Computational Intelligence 707. Springer
International Publishing, 1 edition, 2017. ISBN 978-3-319-54926-2, 978-
3-319-54927-9. URL http://gen.lib.rus.ec/book/index.php?md5=

4e5042943712194093c578a7c8ea9679.

Anis Koubaa, editor. Robot Operating System (ROS): The Complete Reference
(Volume 3), volume 3 of Studies in Computational Intelligence 778. Springer,
2018. ISBN 978-3-319-91590-6. URL http://gen.lib.rus.ec/book/

index.php?md5=b98448ecef80c88786fc9703dcb5ffd5.

Anis Koubaa, editor. Robot Operating System (ROS): The Complete Reference
(Volume 4). Studies in Computational Intelligence 831. Springer Inter-
national Publishing, 1st ed. edition, 2020. ISBN 978-3-030-20189-0;978-
3-030-20190-6. URL http://gen.lib.rus.ec/book/index.php?md5=

11871d8ea203df5ddea8fca33c407658.

J. Laird. The Soar Cognitive Architecture. Mit Press. MIT Press, 2012.
ISBN 9780262122962. URL https://books.google.com/books?id=

X4gtrFSlbosC.

132 06 June 2020, 18:32:55 10.00 3 18

https://www.mitpressjournals.org/doi/abs/10.1162/isal_a_00147
https://www.mitpressjournals.org/doi/abs/10.1162/isal_a_00147
https://arc.aiaa.org/doi/abs/10.2514/6.2004-6434
https://arc.aiaa.org/doi/abs/10.2514/6.2004-6434
https://books.google.com/books?id=LAiWPwAACAAJ
https://books.google.com/books?id=LAiWPwAACAAJ
http://gen.lib.rus.ec/book/index.php?md5=f914a41247978eb9baf42bfce070cca4
http://gen.lib.rus.ec/book/index.php?md5=f914a41247978eb9baf42bfce070cca4
http://gen.lib.rus.ec/book/index.php?md5=4e5042943712194093c578a7c8ea9679
http://gen.lib.rus.ec/book/index.php?md5=4e5042943712194093c578a7c8ea9679
http://gen.lib.rus.ec/book/index.php?md5=b98448ecef80c88786fc9703dcb5ffd5
http://gen.lib.rus.ec/book/index.php?md5=b98448ecef80c88786fc9703dcb5ffd5
http://gen.lib.rus.ec/book/index.php?md5=11871d8ea203df5ddea8fca33c407658
http://gen.lib.rus.ec/book/index.php?md5=11871d8ea203df5ddea8fca33c407658
https://books.google.com/books?id=X4gtrFSlbosC
https://books.google.com/books?id=X4gtrFSlbosC

Chapter 10 Bibliography Chapter 10 Bibliography

Maja J. Matarić and François Michaud. Behavior-Based Systems, pages 891–
909. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008. ISBN 978-
3-540-30301-5. doi: 10.1007/978-3-540-30301-5_39. URL https://doi.

org/10.1007/978-3-540-30301-5_39.

Anand S.; Singh Munindar P. Müller, Jörg P.; Rao. [Lecture Notes in
Computer Science] Intelligent Agents V: Agents Theories, Architectures, and
Languages Volume 1555 || The Belief-Desire-Intention Model of Agency,
volume 10.1007/3-540-49057-4. 1999. ISBN 978-3-540-65713-2,978-3-540-
49057-9. doi: 10.1007/3-540-49057-4_1. URL http://gen.lib.rus.ec/

scimag/index.php?s=10.1007/3-540-49057-4_1.

Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. Adaptive
Computation and Machine Learning. The MIT Press, 1 edition, 2012.
ISBN 0262018020,9780262018029.

N.S. Nise. Control Systems Engineering, 7th Edition. Wiley, 2015.
ISBN 9781118800829. URL https://books.google.com/books?id=

BwTYBgAAQBAJ.

R. Pfeifer and J. Bongard. How the Body Shapes the Way We Think: A
New View of Intelligence. MIT Press, 2006. ISBN 9780262288521. URL
https://books.google.com/books?id=EHPMv9MfgWwC.

Morgan Quigley, Ken Conley, Brian P. Gerkey, Josh Faust, Tully Foote,
Jeremy Leibs, Rob Wheeler, and Andrew Y. Ng. Ros: an open-source
robot operating system. In ICRA Workshop on Open Source Software, 2009.

Derek Rowell and David N. Wormley. System Dynamics: An Introduction.
Prentice Hall, 1997.

S.J. Russell and P. Norvig. Artificial Intelligence: A Modern Ap-
proach. Prentice Hall series in artificial intelligence. Prentice Hall, 2010.
ISBN 9780136042594. URL https://books.google.com/books?id=

8jZBksh-bUMC.

Francisco Varela. The emergent self. Web, May 1996.
URL https://www.edge.org/conversation/francisco_

varela-chapter-12-the-emergent-self.

John Von Neumann and Arthur W. Burks. Theory of self-
reproducing automata, 1966. URL https://archive.org/details/

theoryofselfrepr00vonn_0.

133 06 June 2020, 18:32:55 10.00 3 19

https://doi.org/10.1007/978-3-540-30301-5_39
https://doi.org/10.1007/978-3-540-30301-5_39
http://gen.lib.rus.ec/scimag/index.php?s=10.1007/3-540-49057-4_1
http://gen.lib.rus.ec/scimag/index.php?s=10.1007/3-540-49057-4_1
https://books.google.com/books?id=BwTYBgAAQBAJ
https://books.google.com/books?id=BwTYBgAAQBAJ
https://books.google.com/books?id=EHPMv9MfgWwC
https://books.google.com/books?id=8jZBksh-bUMC
https://books.google.com/books?id=8jZBksh-bUMC
https://www.edge.org/conversation/francisco_varela-chapter-12-the-emergent-self
https://www.edge.org/conversation/francisco_varela-chapter-12-the-emergent-self
https://archive.org/details/theoryofselfrepr00vonn_0
https://archive.org/details/theoryofselfrepr00vonn_0

Chapter 10 Bibliography Chapter 10 Bibliography

Slavoj Žižek. How to Read Lacan. W W Norton & Company Inc, 2006.

Ludwig Wittgenstein and G.E.M. Anscombe. Philosophical Investigations.
Blackwell Publishing, 2001.

Stephen Wolfram. A New Kind of Science. Wolfram Media, 1 edition, 2002.
ISBN 1-57955-008-8,9781579550080.

Stephen Wolfram. A new kind of science: A 15-year review. Web,
May 2017. URL https://writings.stephenwolfram.com/2017/05/

a-new-kind-of-science-a-15-year-view/.

Slavoj Žižek. Less Than Nothing: Hegel and the Shadow of Dialectical
Materialism. Verso, 2012. ISBN 9781844678976.

134 06 June 2020, 18:32:55 10.00 3 20

https://writings.stephenwolfram.com/2017/05/a-new-kind-of-science-a-15-year-view/
https://writings.stephenwolfram.com/2017/05/a-new-kind-of-science-a-15-year-view/

	Introduction to Robotics
	Introduction
	Defining robots
	Robot mechanicality
	Robot sensitivity
	Robot potency
	Robot intelligence
	Robot artificiality and artificial life
	Robot autonomy and human-robot collaboration
	Exercises for Chapter 01

	Embodiment
	Robot mechanics
	Robot control architectures
	Deliberative control
	Reactive control
	Hybrid control
	Behavior-based control
	Exercises for Chapter 04

	Introduction to ROS
	Introducing ROS
	ROS methodology
	Resource R1 Setting up the development environment

	ROS basics
	ROS graphs
	ROS packages
	Running and launching ROS nodes
	Coordinate frame transformations

	ROS topics
	Resource R2 Getting the textbook code
	Resource R3 Installing and configuring git
	Publishing to topics
	Subscribing to topics
	Custom messages
	Other considerations

	ROS services
	Introducing ROS services
	Serving and calling a ROS service

	ROS actions
	Introducing ROS actions
	Serving and calling a ROS action

	Open-loop control with ROS
	Closed-loop control with ROS
	Control architectures with ROS
	Bibliography

