
Chapter 04 Robot control architectures Lecture 04.02 Reactive control

Lecture 04.02 Reactive robot control architecture

Robot control that is characterized by sense data being simply mapped to
simple actions that work together to achieve tasks is said to have a reactivereactive control

architecture control architecture. By “simply mapped,” we mean a long calculation is
not required to determine the appropriate action. Frequently, the maps
are simple rules like, “If s then a.” For instance, “if a dropoff is detected
ahead, stop.” This structure is called a finite state machine (FSM). A FSMfinite state

machines models a robot-environment “world” as consisting of a finite number of
states, exactly one of which exists at each moment. State transitions occurstate transitions

from one state to another when some conditions are met. In the case of “If
s1 then a1,” we define a state transition function (map) f1 that maps (sense)state transition

function event s1 to action a1, which presumably will change the actual state to some
(usually) new state s2.

s1 s2state-space

choose a1
f1 a1

Figure 04.2: a state transition from s1 to s2 via the state transition function f1 and action
a1.

For simple actions, it is easy to see how these maps work. For more-
complicated actions, especially those involving long sequences of simple
actions, it is not so clear how to go about designing such maps. This is
especially true when we consider the frequently large number of possible
states in which the robot could be: for every position, orientation, speed,
distance from objects, etc., actions must be specified. In other words, the
state-space is usually large and if we imagine, as designers, assigning an
action to each state . . . we see the trouble: there are too many possible
states to choose an action for each. In other words, the problem is usually
intractable.intractable

One approach is to break the state-space into subspaces and assign
actions to these, instead of individual states. But a further complication
here arises: what if the subspace domains of these maps aren’t mutually
exclusive? Consider Figure 04.3. In the region of overlap S1 ∩ S2, both
f1 and f2 apply, leading to different actions a1 and a2. Sometimes there
is no conflict and both actions are desirable (and non-conflicting); other

48 06 June 2020, 18:32:55 04.02 3 1



Chapter 04 Robot control architectures Lecture 04.02 Reactive control

S1

S2

S3

S4
state-space

choose a1

choose a2

f1

f2

a1

a2

Figure 04.3: two overlapping subspaces with corresponding state transitions.

times, only one or the other is desirable, so arbitration is necessary; finally, arbitration

sometimes a fusion is desirable in which the original actions are mixed fusion

in some way. For instance, perhaps S1 = {an object is on the left} and
S2 = {an object is on the right}. In, for instance, a corner of a room, both will
be true, so the state s ∈ S1 ∩ S2 obtains. If a1 is “continue and angle right”
and a2 is “continue and angle left,” which seems reasonable, something
must be be done because there is clearly a conflict here. If we proceed by
arbitration, either a1 or a2 is chosen, but neither is probably desirable. We
could proceed by a simple fusion in which we simply “add” the two actions
(programmatically and not electro-mechanically, which would waste of
power and could cause damage to the robot): the robot would just continue
forward. No, instead, we probably want what could be considered a new
subspace-function-action or a more complex fusion, something like “stop,
rotate by some angle, and continue.”

But even if a designer could go through each subspace and assign it
an action in a reasonable amount of (design) time, which actions (and
arbitrations) should they choose in each state to consistently achieve
desired tasks?

To even further complicate things, the state of the robot must be
estimated from measurements, from which it is not always possible to
completely or accurately reconstruct the state. And even when it is
possible, the estimation process can be model-dependent and therefore it
may take (run) time—something generally discouraged in a reactive control
architecture.

These challenges indicate a systematic design approach. This is pro-
vided by the subsumption [reactive] architecture (SA), to which we now turn. subsumption

architecture (SA)But before we describe its structure, it is worth considering some of its fun-
damental design principles.

49 06 June 2020, 18:32:55 04.02 3 2



Chapter 04 Robot control architectures Lecture 04.02 Reactive control

04.02.1 The world is its own best model

The motto, (Brooks, 1999)

The world is its own best model

is one of the fundamental principles of the SA and other reactive architec-
tures. The idea here is that it is better to get information about the world
from itself than from models thereof—that is: measure it, and now! This
means the SA relies very little on models and computation. For instance,
consider a robot performing the three-action task T1: (a1) pick up an ob-
ject; (a2) open the hatch; and (a3) place the object inside. We could reason
as follows: when we pick up an object, open the hatch, then place the ob-
ject inside. That is, a1 ⇒ a2 ⇒ a3. The implicit assumption, here, is that
we know how things will go. But the world is a fickle place, my friend.
The object was slippery and part way through being picked up (a1), it was
dropped, and nothing was placed inside! Or the hatch got stuck (a2) and
our manipulator crashed into it (a3)! However, using the principle that the
world is its own best model, we would not rely on such (FSM) logic. In-
stead, we might use realtime sensor information, interpreted as events, say

• s1 = {sensed an object to pick up},
• s2 = {sensed an object near the hatch}, and
• s3 = {sensed the hatch is open}.

Then events would proceed as follows:

• if s1 then a1 (should cause s2),
• if s2 then a2 (should cause s3), and
• if s3 then a3.

This is much more resilient; if, for instance, the hatch gets stuck, then
¬s3 and therefore ¬a3—that is, the manipulator would not crash into the
hatch.2

At this point, we can see another way of thinking about this design
principle: it is as if communication among the modules that act is channeledcommunication

through the world itself. Instead of communicating among modules through

2This simple example ignores the obvious fact that even a non-reactive control architec-
ture would probably make more extensive use of sensor data than imagined here. Similarly,
the “model” here is a simplistic FSM logic: if action ai, then the event I expect will certainly
follow. Most models would be more nuanced and be updated from sensor data; however,
added model detail leads to slower responses.

50 06 June 2020, 18:32:55 04.02 3 3



Chapter 04 Robot control architectures Lecture 04.02 Reactive control

software or hardware signals, the results of each one’s action in the world
(environment-robot) are simply there and need no other “model.”

Although this principle was originally developed by the founders of the
reactive control architecture, it has really become a general design principle
in all robotic control. And let’s not kid ourselves: it has its limitations.
The most significant limitation is temporal: sometimes the past and the temporal

limitations(modeled) future are relevant to what actions we would be best taken now.
Furthermore, sensor data is imperfect and incomplete: although we have
said the world is “simply there,” this is actually a fantasy, and we always
have to estimate what is going on from measurements. It is more honest to estimate

say “it is easier to measure most things than to model them.”

04.02.2 Evolution and emergence

The next design principle of the subsumption architecture is

Start with the simplest actions. I.e.—design bottom-up!

The apparent banality of this is deceiving: it is easy to get stuck thinking
about “high-level” behaviors when we begin designing. While we cannot
forget that these are the goal, in a subsumption architecture (and beyond),
the simplest actions are first. The next principle is related:

Iteratively include more actions, debugging along the way.

The idea is to try to form more-complex tasks by including more actions.
How might these actions combine? The following design principle begins
to answer this question:

Higher actions can override lower ones.

We mean “higher” in a sense already alluded to, but which will become
more precise in the next section. Given our bottom-up approach, lower-
levels are designed early and higher-levels are designed later. In this sense,
the subsumption architecture design process follows biological evolution, evolution

which starts simply, builds incrementally, and overrides selectively.
Finally, consider the final design principle:

Complex tasks emerge from combinations of simpler actions.

This is a sort of “promise” that complexity can be achieved by following
these design principles: it is reasonable to expect emergence. Given the emergence

success of this architecture in many robot applications, it seems well-
founded.

51 06 June 2020, 18:32:55 04.02 3 4



Chapter 04 Robot control architectures Lecture 04.02 Reactive control

04.02.3 The subsumption architecture

The subsumption architecture uses a type of finite state machine (FSM)
model.3 Transition functions map subsets of the state-space among each
other.

Design proceeds incrementally by module aka layer, each of whichmodule
layer contains one or (usually) several state transition function definitions. A

layer is designed to achieve a task like “stand up” or “drive forward” ortask

“wander.” Layers are stacked “up,” with the higher layers having twostacked

privileged capabilities over lower layers:

suppression A higher layer can suppress (turn off) one or more of a lower
layer’s input(s).

inhibition A higher layer can inhibit (turn off) one or more of a lower layer’s
output(s).

This provides a great deal of flexibility in the design process. For instance,
consider mobile robot with two layers: a layer L1: wander and a higher layer
L2: avoid obstacles. Most likely, it will be necessary for L2 to inhibit at least
some of the outputs of L1, with L2, doing its best impersonation of Jesus,
“taking the wheel,” if you will.

04.02.4 Similar reactive architectures

It is worth mentioning that many reactive architectures have been devel-
oped from some or all of the principles of the subsumption architecture. In
particular, the behavior-based architecture of Lecture 04.04 is a direct ex-
tension thereof. Others, such as SMACH (wiki.ros.org/smach) from the
Robot Operating System (ROS – we will introduce ROS in Part II). SMACH
uses what is called a hierarchical state machine that has several advantages.hierarchical state

machine

3Brooks uses some nonstandard terminology here that can cause confusion. He calls
the fundamental building unit of the subsumption architecture an “augmented finite state
machine” or AFSM. By “state machine,” he seems to mean what we have called a state
transition function and action. By “augmented,” he seems to mean the inclusion of a regular
transition-action, registers, timers, and connections thereamong (Brooks, 1999, p. 30).

52 06 June 2020, 18:32:55 04.02 3 5

http://wiki.ros.org/smach

