
Chapter 06 ROS basics Lecture 06.02 ROS packages

Lecture 06.02 ROS packages

ROS code is arranged into packages. Before we can describe packages,packages

though, we need two apparatus: the ROS build system catkin and thecatkin

ROS workspace.workspaces

06.02.1 The ROS build system catkin

Most software is written by programmers as source code in some program-source code

ming language. In this text, we write source code in Python. When the
software is ready to be used, it is converted from source code into (binary)
machine code and packaged up for distribution. A piece of software that
controls this process is called a build automation utility. Examples includebuild automation

utility Make, Qbs, and Cabal.
ROS has its own build system catkin built atop CMake, which is itselfcatkin

built on Make. It shares a name with the cluster of flowers such as that of
the willow, pictured in Figure 06.3. Because we are developing in Python,
we will use only a few of catkin’s features, some of which are introduced
in the following sections.

Figure 06.3: the catkin of a willow (Didier Descouens).

70 06 June 2020, 18:32:55 06.02 3 1

https://en.wikipedia.org/wiki/File:Salix_caprea_Male.jpg


Chapter 06 ROS basics Lecture 06.02 ROS packages

06.02.2 ROS workspaces
workspaces

Workspaces are directories in which you can develop ROS code. Each project
should have its own workspace, and workspaces cannot interact.

06.02.2.1 Setting up a workspace

We will now set up a workspace. Open a bash terminal.2 Change (cd) to a
convenient directly like your user home directory ~. Make a new directory
for your code like code as follows.

cd ~ # change directory to user home
mkdir -p code # -p creates dir only if it doesn't exist
cd code # change directory into code

Now make a directory ros_ws_01 for your new workspace.

mkdir -p ros_ws_01
cd ros_ws_01

Every workspace needs a source directory src.

mkdir -p src
cd src

Let’s inspect the tree we’ve made.

pwd # print current directory

/home/picone/code/ros_ws_01/src

06.02.2.2 Initializing the workspace

Now that we’re in the src directory, we can initialize a workspace.

catkin_init_workspace

2We assume you have sourced the ROS distribution setup.bash in your .bashrc file
so it will load when you open a new bash terminal.

71 06 June 2020, 18:32:55 06.02 3 2



Chapter 06 ROS basics Lecture 06.02 ROS packages

Copying file from
"/opt/ros/melodic/share/catkin/cmake/toplevel.cmake" to
"/home/picone/code/ros_ws_01/src/CMakeLists.txt"

↪→
↪→

As we can see, this created a file CMakeLists.txt.

ls # list files and folders in current dir

CMakeLists.txt

Now we can finalize our new workspace using the catkin_make
command from the workspace root.

cd .. # up a level to ros_ws
catkin_make

We have made a workspace!

06.02.2.3 Sourcing the workspace

Let’s investigate the new directories in our workspace.

ls

build devel src

So build and devel are new! We will not make much use of the
former, but the latter will include the setup.bash file, which we will
source in order to make available to our shell the new workspace.

source devel/setup.bash

Note that this must be sourced whenever a new terminal (bash shell)
is opened. Of course, you can make this automatically be sourced in your
~/.bashrc file, but this assumes you will only be using this workspace.

06.02.3 ROS packages

ROS packages are code directories containing certain files and organized inpackages

a certain way. Packages are usually written for specific applications, but
could be applied to many others. The ROS community tends to share
packages and develop them cooperatively, but there are privately held
packages as well (the ROS license permits this).

72 06 June 2020, 18:32:55 06.02 3 3



Chapter 06 ROS basics Lecture 06.02 ROS packages

06.02.3.1 Creating a new package

In this section, we will create a new package. Packages are developed in a
workspace’s src directory. Let’s cd to that of the workspace created in the
preceding section.

cd ~/code/ros_ws_01/src

We can create a new package as follows.

catkin_create_pkg sweet_package rospy

Created file sweet_package/package.xml
Created file sweet_package/CMakeLists.txt
Created folder sweet_package/src
Successfully created files in

/home/picone/code/ros_ws_01/src/sweet_package. Please adjust
the values in package.xml.

↪→
↪→

This created the directory sweet_package and populated it with
CMakeLists.txt, package.xml, and the directory src.

cd sweet_package
ls

CMakeLists.txt package.xml src

The first of these has information for catkin and the directory src is
initially empty – it will contain the package source code we will write. The
package.xml file contains package metadata and should be edited.

cat package.xml

The following is an abbreviated version of the package.xml file
contents with some editing.3

3A built-in text editor gedit can be used (e.g. gedit package.xml). However,
consider installing the friendlier app Sublime Text via the Ubuntu Software app store. It
will give you the command subl (e.g. subl package.xml) which you can use to easily
edit many text-based files such as xml files.

73 06 June 2020, 18:32:55 06.02 3 4



Chapter 06 ROS basics Lecture 06.02 ROS packages

<?xml version="1.0"?>
<package format="2">
<name>sweet_package</name>
<version>0.0.0</version>
<description>The sweet_package package</description>

<!-- One maintainer tag required, one per tag -->
<maintainer email="rpicone@stmartin.edu">Rico Picone</maintainer>

<!-- One license tag required, multiple allowed, one per tag -->
<license>BSD</license>

<!-- Url tags are optional, multiple allowed, one per tag -->
<url type="website">http://wiki.ros.org/sweet_package</url>

<!-- Author tags are optional, multiple allowed, one per tag -->
<author email="rpicone@stmartin.edu">Rico Picone</author>

<!-- The *depend tags are used to specify dependencies -->
<buildtool_depend>catkin</buildtool_depend>
<build_depend>rospy</build_depend>
<build_export_depend>rospy</build_export_depend>
<exec_depend>rospy</exec_depend>

<!-- The export tag contains other, unspecified, tags -->
<export>
</export>
</package>

I have filled in some of this information as an example. Of special im-
portance are the depend tags. When we called catkin_create_package,depend tags

the first argument was the name of our new package sweet_package and
the second argument was a dependency rospy, a ROS package which is the
dependency that is required for writing nodes in Python. Note that this de-
pendency appears in package.xml under multiple types of depend tags;
the differences among these tags will be discussed, later. For now, note that
we could have added more dependencies when we created the package by
listing them after rospy. But we can always add more dependencies later
by directly editing package.xml.

Now that we have a package, we can add Python code files (.py)
that will become ROS graph nodes to the sweet_package/src directory.
Before we do this for our own package, however, let’s first learn how to run
some nodes that come from pre-existing packages.

74 06 June 2020, 18:32:55 06.02 3 5


