
Chapter 06 ROS basics Lecture 06.04 Coordinate frame transformations

Lecture 06.04 Coordinate frame transformations

Robotics requires we keep track of the positions and orientations of many
objects in three-space. A rigid body’s state can be expressed as a three-
dimensional position and orientation (angular position). In a coordinateposition

orientation system, this takes a minimum of 3+ 3 = 6 coordinates.

Different objects have different convenient coordinate systems. For
instance, a mobile robot might have a body-fixed coordinate system with originbody-fixed

at its geometric centroid, x-axis pointing forward, y-axis pointing leftward,
and z-axis pointing upward. Locating an object in this coordinate system
would be different than that of, say, a base station. Consider for a mobile
robot a two-dimensional body-fixed coordinate system o, world coordinate
system w, and a pseudo body-fixed coordinate system p that is merely a
translation of the world coordinate system to the p origin—see Figure 06.5.
Let a point in space in w/p/o-coordinates is represented by the position
vector rw/rp/ro. Let t, be a vector from the w-origin to the p-origin.

xw

yw

xp

yp

xo

yo

t

θ

rw

rpro

Figure 06.5: a two-dimensional body-fixed coordinate system o, world coordinate system
w, and a pseudo body-fixed coordinate system p.

78 06 June 2020, 18:32:55 06.04 3 1

Chapter 06 ROS basics Lecture 06.04 Coordinate frame transformations

06.04.1 Translation

Suppose the robot can only translate and not rotate. Thew and p coordinate
transformations are sufficient to describe its motion. The transformation is

rw = rp + t (06.1a)
rp = rw − t. (06.1b)

As we will see in a moment, rotation of a vector is described by a matrix
operation on a vector. It is therefore convenient to write translation as a
matrix operation in one extra dimension:

rw =

1 0 tx
0 1 ty
0 0 1

 rp (06.2a)

=

1 0 tx
0 1 ty
0 0 1

︸ ︷︷ ︸

T

rpxrpy
1

 (06.2b)

=

rpx + tx
r
p
y + ty
1

 . (06.2c)

The last component, then, becomes an accounting tool for writing the trans-
lation operation in this form—called a homogeneous representation (Bullo and homogeneous

representationLewis, 2005). The transformation matrix T translates but does not rotate.

Exercise 06.1

Show that rp = T−1rw by showing it to be equivalent to Equation 06.1b.

06.04.2 Rigid body transformation

Transformation to and from a body-fixed coordinate system is usually a
rigid body transformation: one that changes coordinate frame origin position rigid body

transformationand orientation, but preserves the Euclidean distance between any two
points. Transformations between the w and o coordinate systems, above,
are rigid body transformations. These could be represented as a rotation rotation matrix

matrix R transformation followed by a translation by t:

rw = Rro + t. (06.3)

79 06 June 2020, 18:32:55 06.04 3 2

Chapter 06 ROS basics Lecture 06.04 Coordinate frame transformations

Here, R rotates counter-clockwise by θ with matrix

R =

[
cos θ − sin θ
sin θ cos θ

]
. (06.4)

However, we frequently like to write this in a homogeneous representa-
tion, as well, again adding a component to the vectors such that R becomes

R =

cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 (06.5)

and the rigid body transformation becomes

rw = TRro. (06.6)

06.04.3 Rotation transformations

Rotation transformations, such as R above, come in a variety of flavors.

Euler angles These rotations are described by the sequential rotation about
a (typically) body-fixed coordinate system. The order matters because
rotating about one axis changes the direction of the others! Not one,
but several conventions exist for Euler angle rotation.

Fixed angles Similarly, rotations can be described about axes the origin of
which remains fixed to the body, but the orientation of which remains
fixed to the world frame.

Axis-angles Axis-angle representations describe a rotation as a unit vector
and an angle of rotation about that vector.

Quaternions Quaterions are complex numbers with a real part and three
(instead of the usual one) imaginary parts. They can describe
rotations in a manner that avoids certain problems (e.g. gimbal lock
and ill-conditioned quatities) of other representations and is more
computationally efficient.

The non-quaternion rotation transformations use matrix multiplica-
tion and can therefore have homogeneous forms that include translation.
Quaternions cannot represent translations, so vector-addition must supple-
ment (multiplicative) quaternion transformations.

80 06 June 2020, 18:32:55 06.04 3 3

Chapter 06 ROS basics Lecture 06.04 Coordinate frame transformations

06.04.4 The ROS package tf2

At this point, some things should be clear:

1. for a three-dimensional robot with six degrees of freedom, keeping
track of even two coordinate systems (e.g. world and body-fixed) can
be complicated;

2. adding more coorinate systems for arms, sensors, moving objects in
the environment, etc.—as most real robots require—vastly compli-
cates coordinate transformations;

3. coordinate transformations change with time as body-fixed coordi-
nate systems move; and finally

4. keeping track of all this in an ad hoc way would be disastrous, so a
systematic approach is required.

For these reason, ROS provides just such a systematic approach via its tf2 tf2

package.5,6

The tf2 package has conventions for coordinate transformation data,
organized into a tree structure and buffered in time. Time-buffering is time-buffering

important: frequently, we need not just the latest data, but recent data as
well. As with all ROS dataflow, tf2 communicates via publishing and
subscribing to topics.

ROS tf2 uses quaternions to apply and store rotation information.
However, it is usually easier for us to think in terms of Euler angles.
The older tf package provides a nice conversion from Euler angles to
quaternions:

from tf.transformations import quaternion_from_euler
q = quaternion_from_euler(ax,ay,az) # usage

In the usage example, above, rotation angles (“a”) are applied sequentially
to body-fixed x, y, and z axes.

06.04.5 Try out tf2

In a Terminal window, enter the following to get and compile a turtle tf2
demo.

5The tf2 package documentation can be found here:
wiki.ros.org/tf2

The tf2_ros package provides Python bindings:
wiki.ros.org/tf2_ros

6The tf2 package replaces the older tf package. For information about migrating, see
wiki.ros.org/tf2/Migration

81 06 June 2020, 18:32:55 06.04 3 4

http://wiki.ros.org/tf2
http://wiki.ros.org/tf2_ros
http://wiki.ros.org/tf2/Migration

Chapter 06 ROS basics Lecture 06.04 Coordinate frame transformations

sudo apt-get install \
ros-$ROS_DISTRO-turtle-tf2 \
ros-$ROS_DISTRO-tf2-tools \
ros-$ROS_DISTRO-tf

Now launch the demo with the following command.

roslaunch turtle_tf2 turtle_tf2_demo.launch

A separate screen should load with two turtles. Select the Terminal window
and use the arrow keys to direct one of the turtles about. The other turtle
will follow, as shown in Figure 06.6.

For the full demo, see
wiki.ros.org/tf2/Tutorials/Introduction to tf2

Figure 06.6: a turtle-follow-turtle graphic using tf2.

82 06 June 2020, 18:32:55 06.04 3 5

http://wiki.ros.org/tf2/Tutorials/Introduction to tf2

