
Chapter 07 ROS topics Lecture 07.01 Publishing to topics

Lecture 07.01 Publishing to topics

New topics must first be registered with big Other roscore, which will
thereafter advertise this topic. In rospy, the syntax is as follows.advertise

pub = rospy.Publisher(<topic name string>,<message_type>)

The first argument is the name of the topic and the second is the messagemessage type

type (all messages on a topic have the same type). This registers the topic
name.

Later, we will learn to create our own message types, but for now
we’ll stick to the standard message types defined by the ROS package
std_msgs. For a list of available message types in std_msgs, seestd_msgs

wiki.ros.org/std_msgs

07.01.1 Creating a simple publisher node

The code accompanying the text has a simple publisher node in the
rico_topics package. You should use catkin_create_pkg to create
a parallel package in your own code repository, as follows.

catkin_create_pkg my_topics \
rospy std_msgs message_runtime message_generation

We’ll need the dependencies listed above. Create a new Python file in
my_topics/src with the following.

touch my_topics/src/topic_publisher.py

Open the empty topic_publisher.py in a text editor. You’ll want to
enter here the same code as appears in the sample topic_publisher.
py from robotics-book-code/rico_topics/src, which is listed in
Figure 07.1.

Since this is the first rospy node we’ve written, it’s worth considering
it in detail. The first line is called a shebang and indicates the file is executableshebang

executable and the relevant interpreter (in this case, python). One more step is
actually required to make your new file executable in Ubuntu: you must
change its permissions to be executable, as follows.permissions

chmod u+x my_topics/src/topic_publisher.py

88 06 June 2020, 18:32:55 07.01 3 1

http://wiki.ros.org/std_msgs

Chapter 07 ROS topics Lecture 07.01 Publishing to topics

1 #!/usr/bin/env python
2 import rospy
3 from std_msgs.msg import Int32 # standard int
4

5 # Setup: initialize node, register topic, set rate
6 rospy.init_node(# initialize node
7 'topic_publisher' # node default name
8)
9 pub = rospy.Publisher(# register topic w/roscore

10 'counter', # topic name
11 Int32, # topic type
12 queue_size=5 # queue size
13)
14 rate = rospy.Rate(2) # adaptive rate in Hz
15

16 # Loop: publish, count, sleep
17 count = 0
18 while not rospy.is_shutdown(): # until ctrl-c
19 pub.publish(count) # publish count
20 count += 1 # increment
21 rate.sleep() # set by rospy.Rate above

Figure 07.1: rico_topics/src/topic_publisher.py listing.

07.01.2 Setting up the node

Back to Figure 07.1, following the shebang, there’s the loading of packages
via Python’s package import mechanism. Note that we’re using both
rospy and std_msgs, which we included in our package.xml when we
used catkin_create_pkg. Then follows the initalization of a ROS node
via rospy.init_node. For more details on initializing nodes, see rospy.init_node

wiki.ros.org/rospy/Overview/Initialization and Shutdown

We then register a topic counter of type Int32 (from std_msgs) and
queue size of 5 via rospy.Publisher. Queue size is how many buffered queue size

rospy.Publishermessages should be stored on the topic. The general guidance is: use more
than you need. For more on selecting queue size, see

wiki.ros.org/rospy/Overview/Publishers and Subscribers

Finally, we use rospy.Rate to specify our desired loop timing. This
powerful mechanism will be used in a moment to adaptively maintain a
looping rate.

89 06 June 2020, 18:32:55 07.01 3 2

http://wiki.ros.org/rospy/Overview/Initialization and Shutdown
http://wiki.ros.org/rospy/Overview/Publishers and Subscribers

Chapter 07 ROS topics Lecture 07.01 Publishing to topics

07.01.3 Publishing to the topic

The while loop in Figure 07.1 is pretty simple: while the node isn’t shut
down,

1. publish the count to topic counter via the publish method of the
object pub created by rospy.Publisher,

2. increment the count, and
3. wait until the sleep method says to iterate.

The Rate object rate can use its sleep method to adaptively attempt to
keep the loop running at the specified rate. This timing mechanism is quite
convenient.

07.01.4 Running and verifying the node

First, we need to catkin_make the workspace to make our new package
available. Navigate (cd) in Terminal to your workspace root directory.

catkin_make

If you have an error involving the Python packages em, yaml, or
catkin_pkg, try installing them with the following.

pip install empy pyyaml catkin_pkg

Once your catkin_make finishes successfully, source the workspace.

source devel/setup.bash

Now open a new Terminal and start a roscore service. Now we can
rosrun the new node!

rosrun my_topics topic_publisher.py

Our node is running! Let’s check the current topics to see if counter is
being advertised. A nice tool for this is rostopic.

rostopic list

90 06 June 2020, 18:32:55 07.01 3 3

Chapter 07 ROS topics Lecture 07.01 Publishing to topics

/counter
/rosout
/rosout_agg

So it is. We can ignore the other topics, which always appear. Let’s see
what is being published to the topic.

rostopic echo counter -n 3

data: 17

data: 18

data: 19

The -n 3 option/value shuts down rostopic after three messages.
Otherwise it would continue until we Ctrl + C .

We can also see how the successful our sleep method is at maintaining
our desired loop rate. (We have to Ctrl + C to stop this one.)

rostopic hz counter

subscribed to [/counter]
average rate: 2.001

min: 0.500s max: 0.500s std dev: 0.00000s window: 2
average rate: 1.999

min: 0.500s max: 0.501s std dev: 0.00051s window: 4
average rate: 2.000

min: 0.498s max: 0.501s std dev: 0.00095s window: 6
average rate: 2.000

min: 0.498s max: 0.501s std dev: 0.00088s window: 7

Not too bad!

91 06 June 2020, 18:32:55 07.01 3 4

