
Chapter 07 ROS topics Lecture 07.02 Subscribing to topics

Lecture 07.02 Subscribing to topics

Subscribing to topics with rospy involves two steps:

1. defining a callback function that is called every time a message arrivescallback

(on the topics specified in a moment) and
2. registering the subscription with roscore.

The name of the callback function can be anything—say, callback, but
its argument should be handled as a message of the correct type (i.e. the
message type of the topic to which we are subscribing). Registering the
subscription with roscore is accomplished with the Subscribermethod
as follows.

rospy.Subscriber(
<topic name string>, # e.g. 'cool_topic_bro'
<message_type>, # e.g. Int32 from std_msgs
<callback function handle> # e.g. callback

)

The first two arguments are the same as those of rospy.Publisher. The
final argument is simply the name of the callback function from above.

07.02.1 Creating a simple subscriber node

The code accompanying the text has a simple subscriber node in the
rico_topics package. You should use have used catkin_create_pkg
in Lecture 07.01 to create a parallel package in your own code repository—
we’ll call it my_topics. Create a new Python file in my_topics/src with
the following.

touch my_topics/src/topic_subscriber.py # create file
chmod u+x my_topics/src/topic_subscriber.py # make executable

Open the empty topic_subscriber.py in a text editor. You’ll want to
enter here the same code as appears in the sample topic_subscriber.
py from robotics-book-code/rico_topics/src, which is listed in
Figure 07.2.

We see that the callback function definition def callback(msg)
simply prints the message’s data to the Terminal running the node.
The call to to rospy.Subscriber register’s (with roscore) this node’s

92 06 June 2020, 18:32:55 07.02 3 1



Chapter 07 ROS topics Lecture 07.02 Subscribing to topics

1 #!/usr/bin/env python
2 import rospy
3 from std_msgs.msg import Int32
4

5 def callback(msg): # callback for receiving messages
6 print(msg.data) # print to Terminal
7

8 rospy.init_node('topic_subscriber') # initialize node
9

10 sub = rospy.Subscriber('counter', Int32, callback) # subscribe
11

12 rospy.spin() # wait for node to be shut down

Figure 07.2: rico_topics/src/topic_subscriber.py listing.

subscription to the topic 'counter', with its message type Int32, and
directs messages to the callback function callback, just defined.

Finally, there’s a call to rospy.spin. This function here acts to keep the
node running (so it can receive messages) until it is explicitly shut down.
It’s doing something like the following.

while not rospy.core.is_shutdown():
rospy.rostime.wallsleep(0.5) # seconds

07.02.2 Running and verifying the node

Now that we have created my_topics/src/topic_subscriber.py,
we need to catkin_make and source our workspace.

cd ros_ws_01 # if needed

catkin_make

Now we can source our workspace.

source devel/setup.bash

Now, make sure you’ve started a roscore service running. If not, start
it with the following.

93 06 June 2020, 18:32:55 07.02 3 2



Chapter 07 ROS topics Lecture 07.02 Subscribing to topics

roscore

Also make sure you still have the topic_publisher.py node run-
ning. If not, start it with the following.

rosrun my_topics topic_publisher.py

And now we’re ready to launch the new topic_subscriber.py
node.

rosrun my_topics topic_subscriber.py

100
101
102

The terminal prints the counter, as expected. To see who’s publishing
and subscribing to counter, we can use rostopic as follows.

rostopic info counter

Type: std_msgs/Int32

Publishers:

* /topic_publisher (http://socrates:35309/)

Subscribers:

* /topic_subscriber (http://socrates:40387/)

Just as we expected: topic_publisher is publishing to and
topic_subscriber is subscribed to the topic counter.

07.02.3 Latched topics

Sometimes a topic will have messages published so infrequently that it
could be problematic if a subscriber misses a message because it was not-yet
subscribed to the topic. In this case, we can publish a latched topic, whichlatched topic

makes it so that every new subscriber gets the last message published to
the topic. Latched topics are created with the rospy.Publisher named
argument latched=True, which is by default False.

94 06 June 2020, 18:32:55 07.02 3 3


