
Chapter 07 ROS topics Lecture 07.03 Custom messages

Table 07.1: built-in ROS field- and constant-types for messages.

type serialization C++ Python 2/3

bool unsigned 8-bit int uint8_t bool
int8 signed 8-bit int int8_t int
uint8 unsigned 8-bit int uint8_t int
int16 signed 16-bit int int16_t int
uint16 unsigned 16-bit int uint16_t int
int32 signed 32-bit int int32_t int
uint32 unsigned 32-bit int uint32_t int
int64 signed 64-bit int int64_t long/int
uint64 unsigned 64-bit int uint64_t long/int
float32 32-bit IEEE float float float
float64 64-bit IEEE float double float
string ascii string std::string str/bytes
time sec/nsec unsigned 32-bit int ros::Time rospy.Time
duration sec/nsec signed 32-bit int ros::Duration rospy.Duration

Lecture 07.03 Custom messages

The messages that come in the std_msgs should be exhausted before
considering the specification of a new message description: a line-separated message

descriptionlist of field type-name pairs and constant type-name-value triples. For
field
constant

example, the following is a message description with two fields and a
constant.

int32 x # field type: int32, name: x
float32 y # field type: float32, name: y
int32 Z # constant type: int32, name: Z

The field- and constant-types are usually ROS built-in types, which are
shown in Table 07.1. Other field- and constant-types are possible, as
described in the documentation:

wiki.ros.org/msg

Of particular interest are arrays of built-in types, like the variable-length
array of integers int32[] foo, which is interpreted as a Python tuple.

To use a custom message description, create a .msg file in the subdi- .msg file

rectory <package>/msg/ (you may need to create the subdirectory) and
enter your message description.

95 06 June 2020, 18:32:55 07.03 3 1

http://wiki.ros.org/msg

Chapter 07 ROS topics Lecture 07.03 Custom messages

07.03.1 An example message description

In this section, we develop a custom message description Complex in
msg/Complex.msg for messages with a real and an imaginary floating-
point number. We continue to build on the package we’ve been creating
in this chapter, my_topics, which shadows the package included with the
book, rico_topics.

The first thing when creating a custom message description is to create
the message description file.

07.03.1.1 Creating a message description

From your package root, create it with the following.

mkdir msg
touch msg/Complex.msg

Now we can edit the contents of Complex.msg to include the follow-
ing.

float32 real
float32 imaginary

Both field types are float32 and have field names real and imaginary.
We are now ready to update the build-system

07.03.1.2 Updating the build-system configuration

The package we’ve been working on in this chapter, my_topics, was
created with a bit of forethought: we included as dependencies in
our catkin_create_pkg call the packages message_runtime and
message_generation. If we hadn’t had such foresight, we would
have to make several changes in our package’s package.xml and
CMakeLists.txt files before proceeding to create our own message
description. As it stands, we still need to make a few changes to them.

How we need to change package.xml
Including message_runtime and message_generation in

our catkin_create_pkg call yielded the following lines in our
package.xml, which would otherwise need to be added manually.

96 06 June 2020, 18:32:55 07.03 3 2

Chapter 07 ROS topics Lecture 07.03 Custom messages

<build_depend>message_generation</build_depend>
<exec_depend>message_runtime</exec_depend>

However, we still need to add message_runtime as a <build_depend>.

<build_depend>message_runtime</build_depend>

How we need to change CMakeLists.txt
Including message_runtime and message_generation in

our catkin_create_pkg call yielded the following lines in our
CMakeLists.txt, which would otherwise need to be added manually.
As an additional line in the find_package(...) block, we would need
the following.

message_generation

The rest of the changes we do need to make manually. As an additional
line in the catkin_package(...) block, we need the following.

CATKIN_DEPENDS message_runtime

The add_message_files(...) block needs uncommented and
edited to appear as follows.

add_message_files(
FILES
Complex.msg

)

We have already created the Complex.msg file.
Finally, the generate_messages(...) block needs to be uncom-

mented such that it appears as follows.

generate_messages(
DEPENDENCIES
std_msgs

)

Now our package is set up to use the message type Complex—or, it
will be once we catkin_make our workspace. First, let’s write a simple
publisher and subscriber to try it out.

97 06 June 2020, 18:32:55 07.03 3 3

Chapter 07 ROS topics Lecture 07.03 Custom messages

1 #!/usr/bin/env python
2 import rospy
3 from rico_topics.msg import Complex # custom message type
4 from random import random # for random numbers!
5

6 rospy.init_node('message_publisher') # initialize node
7

8 pub = rospy.Publisher(# register topic
9 'complex', # topic name

10 Complex, # custom message type
11 queue_size=3 # queue size
12)
13

14 rate = rospy.Rate(2) # set rate
15

16 while not rospy.is_shutdown(): # loop
17 msg = Complex() # declare type
18 msg.real = random() # assign value
19 msg.imaginary = random() # assign value
20

21 pub.publish(msg) # publish!
22 rate.sleep() # sleep to keep rate

Figure 07.3: rico_topics/src/message_publisher.py listing.

07.03.1.3 Writing a publisher and subscriber

We can now write a publisher and subscriber that publish and subscribe
to messages with type Complex. Create (touch) a Python node file
my_topics/src/message_publisher.py, change its permissions to
user-executable (chmod u+x), and edit it to have the same contents as the
rico_topics/src/message_publisher.py file shown in Figure 07.3.

Repeat a similar process to create a my_topics/src/
message_subscriber.py with the same contents as the
rico_topics/src/message_subscriber.py file shown in
Figure 07.4.

07.03.1.4 Running and verifying these nodes

Let’s try it out. Navigate to your workspace root and build your workspace.

catkin_make

98 06 June 2020, 18:32:55 07.03 3 4

Chapter 07 ROS topics Lecture 07.03 Custom messages

1 #!/usr/bin/env python
2 import rospy
3 from rico_topics.msg import Complex
4

5 def callback(msg):
6 print 'Real:', msg.real # print real part
7 print 'Imaginary:', msg.imaginary # print imag part
8 print # blank line
9

10 rospy.init_node('message_subscriber') # initialize node
11

12 sub = rospy.Subscriber(# register subscription
13 'complex', # topic
14 Complex, # custom type
15 callback # callback function
16)
17

18 rospy.spin() # keep node running until shut down

Figure 07.4: rico_topics/src/message_subscriber.py listing.

Fire up a roscore. In a new Terminal, in your workspace root,
source devel/setup.bash then run the publisher node.

rosrun my_topics message_publisher.py

In another new Terminal, in your workspace root, again
source devel/setup.bash then run the subscriber node.

rosrun my_topics message_subscriber.py

Real: 0.308157861233
Imaginary: 0.229206711054

Real: 0.121079094708
Imaginary: 0.568501293659

Real: 0.807860195637
Imaginary: 0.486804276705

It works! Random complex numbers are being printed by the
message_subscriber.py node.

99 06 June 2020, 18:32:55 07.03 3 5

