
Chapter 08 ROS services Lecture 08.01 Introducing ROS services

Lecture 08.01 Introducing ROS services

A ROS service is effectively a function one node (the server) provides to otherservices
server nodes (the clients).
clients

Box 08.1 i can haz service? a script

Pretty much, if we have Node A [server] and Node B [client]:
Node A: “Yo I can do X service [registers a service],”
Node B: “Node A, do X for me plz? [requests service]” and waits
Node A: does X [service occurs]
Node A: sends Node B the result of doing X [server returns values]
Node B: “thnks fam” [I just assume this happens].

A key aspect to services is that they are synchronous: a client waits, doingsynchronous

nothing else, while the server “services” it. So obviously this only works
well for tasks that take a limited amount of time, such as:

1. getting a sensor value,
2. setting a parameter, or
3. performing a computation.

08.01.1 An example service type definition

In this section, we develop a custom service type definition WordCount
in srv/WordCount.srv for a service that has as input a string and as
output the number of words in that string. We create a new package for
this chapter, my_services, which shadows the package included with the
book, rico_services. So use, in your workspace’s src directory, use
catkin_create_pkg to create a package, as follows.

catkin_create_pkg my_services \
roscpp rospy message_generation message_runtime

The first thing when creating a custom service definition is to create the
service definition file.

08.01.1.1 Creating a service definition

From your package root, create it with the following.

104 06 June 2020, 18:32:55 08.01 3 1



Chapter 08 ROS services Lecture 08.01 Introducing ROS services

mkdir srv # traditional directory for service definitions
touch srv/WordCount.srv

Now we can edit the contents of WordCount.srv to include the
following.

string words
---
uint32 count

Above the delimiter “---” are input field types and names and below the input field

delimiter are output field types and names. output field

We are now ready to update the build-system.

08.01.1.2 Updating the build-system configuration

The package we’re creating in this chapter, my_services, was
created with a bit of forethought: we included as dependencies in
our catkin_create_pkg call the packages message_runtime and
message_generation. If we hadn’t had such foresight, we would
have to make several changes in our package’s package.xml and
CMakeLists.txt files before proceeding to create our own message
description. As it stands, we still need to make a few changes to them.

How we need to change package.xml
Including message_runtime and message_generation in

our catkin_create_pkg call yielded the following lines in our
package.xml, which would otherwise need to be added manually.

<build_depend>message_generation</build_depend>
<exec_depend>message_runtime</exec_depend>

However, we still need to add message_runtime as a <build_depend>.

<build_depend>message_runtime</build_depend>

How we need to change CMakeLists.txt
Including message_runtime and message_generation in

our catkin_create_pkg call yielded the following lines in our
CMakeLists.txt, which would otherwise need to be added manually.

105 06 June 2020, 18:32:55 08.01 3 2



Chapter 08 ROS services Lecture 08.01 Introducing ROS services

As an additional line in the find_package(...) block, we would need
the following.

message_generation

The rest of the changes we do need to make manually. The
add_service_files(...) block needs uncommented and edited to
appear as follows.

add_service_files(
FILES
WordCount.srv

)

We have already created the WordCount.srv file.
Finally, the generate_messages(...) block needs to be uncom-

mented such that it appears as follows.

generate_messages(
DEPENDENCIES
std_msgs

)

Now our package is set up to use the service type WordCount—or, it
will be once we catkin_make our workspace. (Go ahead and do so now.)

08.01.1.3 See it with rossrv

The package rosmsg (already installed) includes the command rossrv,
which gives information about services.

rossrv

rossrv is a command-line tool for displaying information about ROS
Service types.↪→

Commands:
rossrv show Show service description
rossrv info Alias for rossrv show
rossrv list List all services
rossrv md5 Display service md5sum
rossrv package List services in a package
rossrv packages List packages that contain services

We could try it on our new service type WordCount as follows.

rossrv show WordCount

106 06 June 2020, 18:32:55 08.01 3 3



Chapter 08 ROS services Lecture 08.01 Introducing ROS services

[my_services/WordCount]:
string words
---
uint32 count

[rico_services/WordCount]:
string words
---
uint32 count

So the WordCount service type is available in both packages
rico_services and my_services. We have successfully created a
service type! In Lecture 08.02, we’ll learn to serve and call this service type.

107 06 June 2020, 18:32:55 08.01 3 4


