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Mechanical Engineering

We present a theoretical framework for modeling the transport of any number of globally con-

served quantities, in any spatial configuration, and apply it to obtain a model of magnetization

transport for spin-systems with two spin-species. The framework allows an entropy function

to define a model that explicitly respects the laws of thermodynamics. A one-species model is

derived as a special case. In the high spin-temperature (linear) limit, this model is shown to be

equivalent to the model of nuclear spin transport of Genack and Redfield (Genack and Redfield,

1975). The two-species model is novel in that it describes systems of two spin-species and systems

with large polarization. It is explored numerically and shown to be consistent with experimental

results, which are also presented, but are insufficient to validate the model. This is followed

by a numerical exploration of a potential experiment that could validate the model. Analytic,

steady state solutions for the one- and two-species models are derived. The separative quality

of transport is quantified by two figures of merit: one static and the other dynamic. The theo-

retical framework, two-species model, and experimental results provide a foundation for further

study of separative magnetization transport (SMT), and in particular the study of harnessing it

to induce hyperpolarization by optimizing the presented figures of merit.
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Chapter 1

Introduction

Magnetization transport for a spin-system in a spatially varying magnetic field has been stud-

ied theoretically (Genack and Redfield, 1975) and experimentally (Eberhardt et al., 2007; Budakian

et al., 2004). Thus far, neither a multiple spin-species model, nor a model (of one- or two-species)

that is valid for large polarization has been published.1 We propose such models, and examine

their specifically separative character, with emphasis on the possibility of harnessing separative

magnetization transport (SMT) for the hyperpolarization of nuclear magnetization. With recent

significant enhancements of the technique of dynamic nuclear polarization (DNP) (Ni et al., 2013;

Krummenacker et al., 2012; Abragam and Goldman, 1978), which has been shown to achieve

significant hyperpolarization, and with the current study of the possibility of hyperpolarizing sam-

ples through SMT, models that can describe the high-polarization regime in a spatially varying

magnetic field are needed. Hyperpolarization would boost the signal in any device measuring

magnetic resonance, such as the magnetic resonance force microscopy (MRFM) apparatus with

which the experiment of Appendix A was performed.

Early rudimentary analysis of SMT predicted significant hyperpolarization that was not ob-

served in experiment, as described in Appendix A (Measuring separative magnetization transport).

The primary impetus for the detailed theory and model presented in Chapter 2 (Framework for

transport analysis) and Chapter 3 (Modeling magnetization transport: two spin-species) was to

understand this experiment and lay the groundwork for further exploration of SMT.

The theory and model of Chapter 2 and Chapter 3 describe, as a special case, the dynamics of

a one-species spin system, as derived in Chapter 4 (Modeling magnetization transport: one spin-

species). The high-temperature one-species models of magnetization transport, such as that of

Genack and Redfield, do not apply for systems with high-polarization. In the high-temperature

limit of the one-species model of Chapter 4, we find congruence with the model of Genack and

1The article Picone et al. (forthcoming) proposes the framework of Chapter 2 and a one spin-species model. A
portion of what follows is contained in that publication.
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Redfield, which we take to be a validation of the proposed entropy function of Chapter 3.

A numerical study of the two-species model is undertaken in Chapter 5 (Numerical investiga-

tions of the two spin-species model). This includes an investigation of the performed experiment

that explains its results. However, its (null) results were insufficiently descriptive to validate the

model. The dynamics of the two-species system are further explored by investigating a proposed

experiment that could be performed to validate the model, which predicts a doubling of nuclear

polarization in this case. This is not believed to be an experiment with maximal hyperpolariza-

tion, but one that is straightforward to instantiate.
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Chapter 2

Framework for transport analysis

In this chapter, a framework for transport analysis is presented that respects the four laws of

thermodynamics, that can describe various spatial geometries, and that can be extended to any

number of conserved quantities.

We begin with a discussion of the two fundamental processes of transport: diffusion and

separation.

2.1 Transport: diffusion & separation

The well-known diffusion equation for some function ⇢ and positive scalar coefficient � is

@
t

⇢ = �r2⇢. (2.1)

Its key feature is that local concentrations of ⇢ are diminished, leading to uniform distributions.

However, another process is observed in, for example, chromatography, field-flow fractiona-

tion Giddings (1991), and isotope separation. These technologies exhibit an effect called separation
that concentrates ⇢, and is thus the opposite of diffusion.

According to Giddings, with regard to mass transport,

Separation is the art and science of maximizing separative transport relative to dis-

persive transport.1

By “dispersive transport,” Giddings means what we have called “diffusion”; by “separative trans-

port,” he means a process in which the concentration of some distributed quantity is achieved.

We adopt the language of Giddings for the dynamics of magnetization: transport is the general

term, including both diffusion and separation.

1See Giddings (1991), p. 10.
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Equation 2.1 has no provision for separation. The models of mass transport are not immedi-

ately applicable to magnetization transport because clear analogs are not available for some fea-

tures (e.g. there is no magnetization analog for the gravitational gradient in distillation towers).2

Moreover, the mass transport models are not dynamic. We present a framework for transport

analysis and subsequent dynamic models that include both diffusion and separation.

2.2 Framework for transport analysis

We will proceed in the coordinate-free language of differential geometry, which allows the laws

of thermodynamics to be respected explicitly, regardless of spatial geometry or the number of

conserved quantities.

What follows is a necessarily extensive list of definitions and remarks. As we will see, the

mathematical rigor of these definitions will enable and greatly simplify the subsequent theoretical

development.

The following definitions are the elements from which two propositions are constructed that

describe a framework for transport analysis and its adherence to the laws of thermodynamics.

In any specific application of the theory, defining the spatial geometry, conserved quantities,

entropy function, and a space-time scale will be sufficient to construct a model of transport that

respects the laws of thermodynamics from the following definitions (as detailed in Remark 2.2).

The elements of the framework are defined in the following order:

(a) the spatial manifold, metric, and coordinates;

(b) conserved quantities and their local densities;

(c) the entropy density and thermodynamic potentials;

(d) Onsager’s kinetic coefficients;

(e) the current of local quantity densities;

(f) the continuity equation for local densities; and

(g) a transport rate tensor and an ansatz further specifying the kinetic coefficients.

Proposition 2.1 will describe how the laws of thermodynamics are satisfied in the definitions and

Proposition 2.2 will assert that the definitions describe a physically valid model of transport. We

begin with spatial considerations.

Definition 2.1 (spatial manifold). Let U be a Riemannian (smooth) manifold, which represents

the spatial geometry of a macroscopic thermodynamic system. We call U the spatial manifold.

For many applications, a Euclidean space3 Rm is an appropriate choice for U.

2In Section 4.4 (The Fenske equation), a connection is made between the mass transport Fenske model and the
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Figure 2.1: Local spatial coordinates (r↵) and coordinate map ' to Rm (shown here with m = 2).
A curve �(t) is a map from an interval on R to the spatial manifold U and has coordinate
representation '(�(t)).

Remark 2.1 (spatial coordinates). Let ' : U ! Rm be some local coordinate map.a Typically, we will

denote component functions of ', defined by '(p) =
�
r1(p), . . . , rm(p)

�
for some point p 2 U, as

(r1, . . . , rm). These are called local spatial coordinates, and typically denoted (r↵). (See Figure 2.1.)

aSee Lee (2012), pp. 15-16, 60-65.

By definition, the Riemannian spatial manifold U is endowed with a Riemannian metric,

which determines the geometry of U.

Definition 2.2 (spatial metric). Let g be a Riemannian metrica on U. We call g the spatial metric.

aSee Lee (1997), p. 23.

In local spatial coordinates, the metric is written as

g = g
↵�

dr↵ ⌦ dr�. (2.2)

Definition 2.3 (conserved quantities). Let q 2 Rn be the n-tuple q = (q
1

, . . . ,q
n

), where q
i

2 R

represents a conserved quantity.

steady state solution of the magnetization model.
3See Bullo and Lewis (2005), p. 22 and Lee (2012), p. 598.
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Definition 2.4 (standard thermodynamic dual basis). Let the ordered basis ("1, . . . , "n) for Rn be

"1 = (1, 0, . . . , 0), . . . "n = (0, 0, . . . , 1).

We call this the standard thermodynamic dual basis,a and it is often denoted ("i).

aAlthough it is an uncommon practice to introduce a dual basis before a basis, we do so here because the quantities
represented by the quantities q and ⇢ are more naturally — from a physical standpoint — considered dual to the
potentials ⌦. Yet, the quantities naturally arise first in the series of definitions.

In the standard basis, with the Einstein summation convention,

q = [q
"

]
i

"i. (2.3)

Definition 2.5 (local quantity density). Let O⇤ be the set of smooth maps from U⇥ R (where R

represents time) to V⇤ ⌘ Rn (i.e. for each point in space and time we assign a vector in Rn).

Given a vector of conserved quantities q, let ⇢ 2 O⇤ represent the local spatial density of each of

the conserved quantities q, such that

q =

Z

U
⇢ dv, (2.4)

where dv is a volume element of U.

In the standard thermodynamic dual basis ("i), we write

⇢ = [⇢
"

]
i

"i, (2.5)

where each [⇢
"

]
i

is a function [⇢
"

]
i

: U⇥ R ! R. The mathematical structure of ⇢ assigned in

the definition is equivalent to a section of the product bundle U⇥ R ⇥ V⇤ ! U⇥ R. Figure 2.2

illustrates this description, where copies of V⇤ = Rn correspond to each location in U.

We now turn to entropic considerations.

Definition 2.6 (local entropy density). Let the local entropy volumetric density function s : V ! R be

a function that is nonnegative and concave.

The restriction of the local entropy density s to nonnegative functions satisfies the third law of
thermodynamics. Moreover, we require that s be concave to allow the Legendre dual relationship

that will now be introduced.

At times it is convenient to work with another set of variables called local thermodynamic
potentials. These are significant because their spatial gradients drive the flow of ⇢.
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Figure 2.2: ⇢ considered as a time-varying section of a product bundle with (black) base U and
(red) section ⇢. The (gray) vector space V⇤ = Rn is duplicated at each point on U. Each copy of
Rn corresponds to a (blue) arrow that represents ⇢ at that point in space and at some given time.
In this example, U is one-dimensional (with curvature) and the vector space is R2, meaning there
is a single spatial dimension and there are two conserved quantities.

R V⇤ V

U⇥ R

s ds

⇢
⌦

Figure 2.3: A commutative diagram relating the spacetime manifold U⇥ R, to thermodynamic
quantity densities ⇢ 2 O⇤, thermodynamic potentials ⌦ 2 O, and the entropy density function
s 2 C1(V⇤, R).

Definition 2.7 (local thermodynamic potentials). Let ⌦ : U⇥ R ! V be defined by the relation

⌦ = ds � ⇢, (2.6)

where the exterior derivative d is taken with respect to the vector space V⇤.a We call ⌦ the local
thermodynamic potential, and it is the Legendre transformb n-tuple conjugate of ⇢. The dual space

of O⇤ is denoted O, and so ⌦ 2 O. The duality gives the standard thermodynamic basis (E
i

) to be

such that E
i

("j) = �
j

i

, where � is the Kronecker-delta.

aThe vector space V⇤ has dual space V⇤⇤ = V . Therefore ⌦ 2 O maps to vectors in V and ⇢ 2 O⇤ maps to covectors
in V⇤.
bFor an excellent article on the Legendre transform and this duality, see Zia et al. (2009).

The standard thermodynamic basis representation of the potential is

⌦ = [⌦
E

]iE
i

. (2.7)
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Figure 2.4: The tangent space T
p

U at point p 2 U with the standard basis @/@r↵|
p

.

The convention has been adopted that thermodynamic vectors are represented by uppercase

symbols with upper indices on vector components (e.g. [⌦
E

]i) and thermodynamic covectors are

represented by lowercase symbols with lower indices on covector components (e.g. [⇢
"

]
i

).

Commonly, inverse temperatures are the thermodynamic potentials of internal energy quan-

tities. In this manner, other thermodynamic potentials can be considered to be analogs of inverse

temperature. For instance, magnetic moment quantities have spin-temperature thermodynamic

potentials. Keeping this in mind can aid the intuition that spatial gradients in ⌦ drive the flow

of ⇢, as in the familiar case of heat transfer being driven by gradients in (inverse) temperature.

We now begin to construct the current of conserved quantity densities j. First, a discussion of

spatially and thermodynamically indexed tensor structures is needed, and this requires calculus

on manifolds.4

In order to do calculus on manifolds, the notion of a tangent space is required:5 a tangent

space at a point p on the spatial manifold is a vector space T
p

U on which tangent vectors of

curves through p live (see Figure 2.4). A chart that includes p provides a convenient basis for

T
p

U via its coordinate vectors6 at point p, @/@r↵|
p

, where (r↵) is the local coordinate representation

of p 2 U. The tangent bundle TU is the disjoint union of the tangent spaces at all points on the

manifold.7

The dual space of the tangent space at p, or cotangent space T⇤
p

U, can be given a convenient basis

dr↵|
p

by dual-mapping the tangent space basis @/@r↵|
p

to the cotangent space. The cotangent
bundle T⇤U is the disjoint union of the cotangent spaces at all points on the manifold.8.

Spatially indexed structures will be expressed in terms of the coordinate vectors @/@r↵|
p

and

coordinate covectors dr↵|
p

. Tensors that are indexed by both spatial coordinates and thermody-

namic bases we call thermometric structures.

4See both Lee (2012) and Spivak (1965).
5See Lee (2012), p. 54.
6See Lee (2012), p. 60.
7See Lee (2012), pp. 65-8.
8See Lee (2012), pp. 272-303
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The following convention for describing thermometric structures will be used. As with any

tensor or tensor field, the order of their indices is merely conventional, but must be accounted.

No convention is established for the ordering of the indices, but we will describe a tensor as

being indexed covariantly (acting on covectors) or contravariantly (acting on vectors), first with a

thermodynamic pair, say (0, 2), and second with a spatial pair, say (1, 1). For instance, a tensor at

some point p 2 U might be (0, 2)⌦ (1, 1), which would have as its standard basis some permutation

of the tensor product dr↵ ⌦ dr� ⌦ E
i

⌦ "j.

The convention that has been adopted is that spatial coordinate vectors @/@r↵ and covec-

tors dr� are indexed by the lowercase Greek alphabet and thermodynamic basis vectors E
i

and

covectors "j are indexed by the lowercase Latin alphabet.

Definition 2.8 (Onsager kinetic coefficients). Let ˆF be defined as a positive-definite type (0, 2)⌦
(0, 2) thermometric contravariant tensor field,a which is called Onsager kinetic coefficients tensor

field, which serves as a thermodynamic and spatial metric.

aNote that a tensor field is a tensor bundle section.

To satisfy the second law of thermodynamics, ˆF must be positive semi-definite, so Definition 2.8

satisfies the Second Law.

Typically, a contravariant tensor field is considered to assign a tensor map at each point p 2 U

from the tangent space T
p

U to a real number. However, considering ⌦ as a section of a fiber-

bundle, it is a structure analogous to the tangent bundle TU, and so ˆF is indexed with both the

usual cotangent local coordinate vectors dr↵ and the thermodynamic dual basis ("i). We often

use the symmetric basis for ˆF,
�
"i ⌦ dr↵

�
⌦
�
"j ⌦ dr�

�
.

Definition 2.9 (current). Let j be defined as

j = ˆF � (d⌦)] (2.8)

where ] is the musical isomorphism,a d is the exterior derivative,b and the symbol � denotes a func-

tional composition. We call j the spatial transport current.

aThe musical isomorphisms are defined by the metric g as maps between the tangent bundle TU and the cotangent
bundle T⇤U (See Lee (2012), pp. 341-3 and Lee (1997), pp. 27-9.). The ] operator maps spatial 1-forms to vectors.
bThe exterior derivative is the coordinate-free generalization of the familiar differential of a function. See Lee

(2012), pp. 362-72.

Equation 2.8 asserts that the current is driven by the (generalized) gradient in thermodynamic

potential ⌦, which is a multi-potential statement of the zeroth law of thermodynamics.

When U = Rm, as is often the case, (2.8) can be written in terms of the coordinate-free grad

Rico Picone
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operator9 as

j = ˆF � grad ⌦. (2.9)

With the preceding definitions, we can introduce the governing equation for ⇢, which is the

fundamental equation of the theory of transport.

Definition 2.10 (continuity). Let the continuity equation be defined as

@
t

⇢ = d⇤
j (2.10)

where d⇤ is the Hodge codifferential operator.a

aThe Hodge codifferential maps k-forms to (k- 1)-forms (Lee, 2012, pp. 438-9). In (2.10) it maps a spatial 1-form
to a 0-form. This is similar to the divergence operator, except that it acts on a 1-form instead of a vector.

Equation 2.10 is an expression of the global conservation of local quantities ⇢. It states that the

local quantities ⇢ change with the (generalized) divergence of a current. For an energy quantity,

this is the first law of thermodynamics.

Proposition 2.1 (laws of thermodynamics). Each of the following statements is a necessary and

sufficient condition for the adherence of the framework for transport analysis to the correspond-

ing law of thermodynamics. In aggregate, then, they are necessary and sufficient conditions for

adherence to all four laws of thermodynamics.

(zeroth) The current j satisfies the equation j = ˆF � (d⌦)], as in Definition 2.9.

(first) The continuity equation is equivalent to the equation @
t

⇢ = d⇤
j, as in Definition 2.10.

(second) Onsager’s kinetic coefficient tensor ˆF is positive semi-definite, as in Definition 2.8.

(third) The local entropy density function s is non-negative, as in Definition 2.6.

Notice that, while the laws of thermodynamics have narrowed, considerably, the possible

forms of the transport equation, two elements remain indefinite, although their general structures

have been prescribed: the local entropy density function s and the tensor of Onsager’s kinetic

coefficients ˆF.

The specific form of the entropy function depends on the system, and so it is as yet necessarily

unspecified. The final step, then, is to specify the form of the Onsager kinetic coefficients tensor

field ˆF. Two forms are presented, the first (Definition 2.13) is quite general and is applied in

Chapter 3 to model the magnetization transport of a system of two spin-species. The second

(Definition 2.14) is an ansatz that can be used in certain applications that have a single transport

rate, and is applied in Chapter 4 to model the magnetization transport of a system of one spin-

species.

But, first, two more definitions are required.

9See Lee (2012), p. 368.
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Definition 2.11 (covariance tensor field). Let cov be defined as the negative-definite tensor fielda

cov =

✓
@2s

@⇢
i

@⇢
j

E
i

⌦ E
j

◆-1

. (2.11)

The tensor field cov represents quantum mechanical observation processes which are related to

the entropy density s by the expression.b We call cov the covariance tensor field.

aSee Equation 2-11 of Onsager and Machlup (1953).
bThis is related to the Ruppeiner metric (Ruppeiner, 1979, 1995).

This is a connection between the quantum mechanical and the macroscopic descriptions of

transport. It can also be expressed in terms of a free-energy and local thermodynamic potentials,

which are related to the entropy and local quantity densities by the Legendre transform.

Definition 2.12 (entropy Hessian). Let ˆG be defined as the type (0, 2)⌦ (0, 2) thermometric con-

travariant tensor field

ˆG = -g⌦ cov. (2.12)

We will call ˆG the entropy Hessian.

In local coordinates and the standard thermodynamic basis,

ˆG = -
�
g
↵�

dr↵ ⌦ dr�
�
⌦
✓

@2s

@⇢
i

@⇢
j

E
i

⌦ E
j

◆-1

. (2.13)

A symmetric standard basis for ˆG is
�
"i ⌦ dr↵

�
⌦
�
"j ⌦ dr�

�
. ˆG is positive-definite because g

is positive-definite by its definition as a Riemannian metric and cov is by definition negative-

definite.

Definition 2.13 (transport rate tensor field). Let ˆ� be a (1, 1)⌦ (1, 1) thermometric mixed tensor

field called the transport rate tensor, which is defined by the relation

ˆF = ˆ�( ˆG). (2.14)

The transport rate tensor field ˆ� sets the space-time scales for transport. In general, there are

n2 ⇥m2 transport space-times scales, but we often assume many fewer by symmetry and spatial

isotropy.
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Proposition 2.2 (framework for transport analysis). Given a system of thermodynamic quantities,

its covariance tensor field,a and its transport rate tensor — and if the system has no significant

advective transportb — the continuity equation of Definition 2.10 and its dependent definitions

describe the transport of the system over times for which global quantities q can be considered

substantially conserved.c

aThe covariance tensor field can be found by observation, by quantum simulation, or by an entropy density function
satisfying Equation 2.11. The Legendre duality makes it equivalent to have a known, valid free energy-density
function.
bWe have not here considered the case of advective transport. For magnetization transport, this means that only

solid-state magnetization samples are considered.
cThat is, times for which Definition 2.3 holds for q.

For certain systems (e.g. a system of spins of a single species), the following ansatz simplifies

the analysis.

Definition 2.14 (OZ-ansatz). Let �oz be a real number called the Onsager-Ziegler transport coefficient
that specifies a single space-time scale. Let the Onsager-Ziegler ansatz (OZ-ansatz) be the following

relation that specifies the Onsager kinetic coefficient tensor field (Definition 2.8):

ˆFoz = �oz ˆG. (2.15)

Equation 2.15 assumes a single space-time scale for all transport. This ansatz is roughly accurate

in many physical systems, but we do not assert that it is generally valid. In nuclear magnetization

transport, this ansatz is usually reasonable.10

Remark 2.2. Therefore, to implement the transport model for any specific system, the only ele-

ments needed are:

(a) the spatial manifold U, metric g, and local coordinates (r↵);

(b) the globally conserved thermodynamic quantities that define local quantity densities ⇢;

(c) the local entropy density function s; and

(d) the transport rate tensor ˆ�.

In Chapter 3 and Chapter 4 the theoretical framework of Proposition 2.2 is developed into

two magnetization transport models: one for two spin-species systems (Chapter 3) and another

for one spin-species systems (Chapter 4). Both models can be derived by a process of specifying

the elements described in Remark 2.2, which is described in detail in Chapter 3.

10See Genack and Redfield (1975), p. 83.
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Chapter 3

Modeling magnetization transport:
two spin-species

In this chapter, we construct a model of magnetization transport for a system containing

both electron-spins and nuclear-spins. From the continuity equation, we develop a steady state

solution and introduce two figures of merit for separative magnetization transport. The model

is derived from the framework of the last chapter in one-dimension, with two spin-species, and

with three conserved quantities. This development is valid for any qualifying system of two spin-

species, but we choose to discuss it in terms of electron-spins and nuclear-spins. In Chapter 4

(Modeling magnetization transport: one spin-species), a one spin-species model is derived as a

special case of the two-species model and shown to be equivalent, in the high spin-temperature

limit, to the model of Genack and Redfield. Table 3.1 summarizes the steps for developing the

two-species magnetization transport model. It shows how each element of the framework of

Chapter 2 can be specified to derive the two-species model. We begin with some definitions.

Definition 3.1 (spatial manifold). Let the manifold U be defined by U = R. We call U the spatial

manifold.a

aWe consider geometries with transverse isotropy of magnetization, external magnetic field, and sample composition;
therefore, only one spatial dimension is of consequence. For this reason, although volumes are considered three-
dimensional, in all other cases we consider only the single spatial dimension.

An atlas for U is given by the chart ' : U ! R, where ' is the identity, which yields the single

Cartesian spatial coordinate (r) in the direction normal to the isotropic plane.

Definition 3.2 (spatial metric). Let g be the (Riemannian) Euclidean metric, g = dr⌦ dr.

For the transport of two spin-species, there are three globally conserved functions on U, so n = 3.
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Deriving a Model of Magnetization Transport in a Magnetic Field: A Summary

Element General Framework of Transport (Chapter 2) 1D Two-Species Magnetization Theory (Chapter 3)

spatial
manifold

U

Let U be a Riemannian manifold (Def. 2.1) with metric
g (Def. 2.2) and local coordinates (r↵) (Rem. 2.1) that
represents the spatial geometry.

Let U be the reals (Def. 3.1, one spatial dimension),
the spatial coordinate be (r), and
the metric be g = dr⌦ dr (Def. 3.2, Euclidean metric).

conserved
quantities

q

Let the vector q 2 Rn represent conserved quantities
(Def. 2.3). Let the basis ("i) be the standard thermo-
dynamic dual basis for q (Def. 2.4).

Let [q
"

]
1

represent the total magnetic energy,
[q

"

]
2

the nuclear magnetic moment, and
[q

"

]
3

the electron magnetic moment (Def. 3.3).

quantity
densities

⇢

Let the vector-valued function ⇢ represent local quantity
density functions that can be integrated over U to obtain
q (Def. 2.5). The function ⇢ inherits the basis ("i).

Let [⇢
"

]
1

represent the local energy density,
[⇢

"

]
2

the nuclear magnetization, and
[⇢

"

]
3

the electron magnetization (Rem. 3.1).

entropy
density

s

Let s be the nonnegative and concave local entropy den-
sity function of quantity densities, all of which can be
expressed as basis transformations of ⇢.

Let s be the entropy of mixing, as described in Def. 3.4.
It is expressed without explicit spatial dependence,
which is convenient for the proceeding calculations.

⇢-dual
potential
⌦

The vector of local thermodynamic potentials ⌦ is the
Legendre dual variable of ⇢ (Def. 2.7). The standard
thermodynamic basis for ⌦ is (E

i

), where E
i

("j) = �
j

i

.

Let ⌦ be the thermodynamic potentials [⌦
E

]i =
@s/@[⇢

"

]
i

. Henceforth, use the polarization thermody-
namic basis (e

i

) and dual basis (ei) (Def. 3.7).

kinetic
coef.

ˆF

Let the covariance tensor field be (Def. 2.11)
cov =

�
@2s/@⇢

i

@⇢
j

E
i

⌦ E
j

�-1, let the entropy Hessian
be ˆG = -g⌦ cov (Def. 2.12), and let the transport rate
tensor field be ˆ�. Finally, define Onsager’s kinetic coef-
ficients as ˆF = ˆ� ˆG (Def. 2.13).

Compute cov, ˆG, and ˆF. The latter two are thermo-
metric structures with four components. Determine the
transport rates �

i

from spin-system properties such as
spin-species and spin-density. A spin-diffusion constant
from the literature may be appropriate.

transport
current

j

Let the transport current j be ˆF acting on what is the
gradient, in Euclidean space, of ⌦ (Def. 2.9):

j = ˆF � (d⌦)].

Compute the current (3.13) from the thermodynamic
potentials with (3.12). The steady state solution (3.18)
to the continuity equation is found by setting [j

e

]
i

= 0.

governing
equation

of ⇢

Let the continuity equation, the governing equation of
⇢, be (Def. 2.10):

@
t

⇢ = d⇤j.
Write the continuity equation (3.15) by computing the
divergence of j, as in (3.14).

Table 3.1: Left-to-right: an element (left) defined in the general framework (center) is applied to
specify an element of the 1D two-species magnetization model (right). Top-to-bottom: a summary
of the derivation of the magnetization transport model.

Definition 3.3 (conserved quantities). Let q 2 Rn be a vector with components: [q
"

]
1

2 R repre-

senting the total magnetic energy (Zeeman and dipole) in SI units J, [q
"

]
2

2 R representing the

total magnetic moment of nuclear spins in SI units A m2, and [q
"

]
3

2 R representing the total

magnetic moment of electron spins in SI units A m2.a

aThe following development is valid for other two-species spin systems, when substituting the appropriate param-
eters (e.g. the gyromagnetic ratio).

Remark 3.1 (quantity densities). These definitions, along with the theory of Proposition 2.2, posit a

temporally varying local quantity density ⇢ 2 O⇤, the components of which, in the standard basis,

represent the energy volumetric density in SI units J m-3 ([⇢
"

]
1

), the nuclear spin magnetization

in SI units A m-1 ([⇢
"

]
2

), and the electron spin magnetization in SI units A m-1 ([⇢
"

]
3

).
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3.1 Local entropy density

The local entropy density function must meet the requirements of Definition 2.6 (local entropy

density). There are a number of possible forms that may be used. See Appendix B (An alternative

entropy density function) for further discussion of this. Here, we choose one that is analytically

tractable and predicts established results. It is based on the entropy of mixing, which is an entropy

function that describes the mixing of several nonreactive quantities.1

Definition 3.4 (two-species local entropy density). Let �
2

and �
3

be the temporally invariant

volumetric spin densities (spins per unit volume), B be the external spatially varying magnetic

field, B
d

be the maximum dipole magnetic field,a and µ
2

and µ
3

be the magnetic moments of

individual spins of each species.b Additionally, let the linear forms  1, 
2

, 
3

2 O be

 1 =
E
1

+B(r) E
2

+B(r) E
3

B
d

(|µ
2

|�
2

+ |µ
3

|�
3

)
(3.1a)

 2 =
1

µ
2

�
2

E
2

(3.1b)

 3 =
1

µ
3

�
3

E
3

, (3.1c)

selected to (dual) map ⇢ to thermodynamically significant real numbers in the interval (-1, 1).

Let the entropy of mixing function ⇠ : (-1, 1) ! R be

⇠(x) =
1

2
ln 4+

1

2
(x- 1) ln (1- x)-

1

2
(x+ 1) ln (1+ x). (3.1d)

Then let the local entropy density s : V⇤ ! R be defined as

s(⇢) =
nX

i=1

�
i

�
2

⇠( 
i

(⇢)), (3.2)

where we use �
1

= �
2

+�
3

.

aWe use the estimate B
d

=
µ
0

2⇡
(|µ

2

|�
2

+ |µ
3

|�
3

).

bFor nuclear and electron spin moments, µ
2

=  h�
n

/2 and µ
3

= - h�
e

/2, where �
n

> 0 and �
e

> 0 are the nuclear
and electron gyromagnetic ratios.

It can be shown that (3.2) satisfies the constraints of Definition 2.6. Although this definition

makes reference to the standard basis (E
i

),  
i

can be written in any basis.

The transport has three important invariances with respect to the entropy function:

1. It is invariant to scalar addition because s enters the continuity equation only through

spatial derivatives. Therefore, the maximum of entropy is inconsequential.

2. It is invariant to scalar multiplication because s enters the continuity equation twice: once

in the numerator and once in the denominator. Therefore, the scaling of s is inconsequential

and we choose a convenient, dimensionless function.

1See (Kardar, 2007, p. 51) and (Landau and Lifshitz, 1980, p. 282).
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3. It is invariant to the choice of globally conserved quantities. Scaling q effectively scales s,

which we have already established to be inconsequential.

3.2 Model of magnetization transport

We now define a model of magnetization transport for two spin-species. These systems do not

necessarily respect the OZ-ansatz, so we must use the transport rate tensor field ˆ� to set the

space-time scales. To remain as general as possible, the following proposition will not specify a

specific form of ˆ�. However, in the development that follows in Section 3.3, one is suggested.

Proposition 3.1 (model of two spin-species magnetization transport). Let a magnetization system

be such that the entropy of Definition 3.4 (two-species local entropy density) is valid and let the

system have two spin-species such that Definition 3.3 (conserved quantities) holds. Additionally,

let the system be non-advective. And let the system meet the other criteria of the framework

for transport analysis of Proposition 2.2 (framework for transport analysis), using Definitions 3.1

(spatial manifold), 3.2 (spatial metric), 3.3, and 3.4 where appropriate. Then the continuity equa-

tion of Definition 2.10 and its dependent definitions describe the transport of the spin system.

3.3 Magnetization transport equation

Proposition 3.1 defines a model for a two spin-species magnetization system. In this section

we explore some specific forms of this model, valid for many systems, including the system

numerically and experimentally investigated in Chapter 5 (Numerical investigations of the two

spin-species model) and Appendix A (Measuring separative magnetization transport).

Bases, thermodynamic potentials, and the method of derivation are discussed as a precursor

to the presentation of the magnetization transport equation. A steady-state solution is developed,

and the special case of thermal equilibrium is derived. Finally, two figures of merit for SMT are

explored. It is important to note that in much of what follows, we assume that the spin densities

�
i

are spatially homogeneous.

3.3.1 Basis considerations

The definitions of the preceding section allow any thermodynamic basis for the local quantity

density ⇢. In a spatially varying magnetic field, it is convenient and common practice to use a

thermodynamic basis that is itself spatially varying. This is computationally advantageous and

allows the continuity equation to be written in a simple component form. Two classes of basis

are now defined.

Rico Picone




17

Definition 3.5 (homogeneous basis). Let a homogeneous basis be a thermodynamic ordered vector-

or covector-basis that is not spatially varying.

The standard thermodynamic bases are spatially invariant, and so they are homogeneous.

Definition 3.6 (inhomogeneous basis). Let an inhomogeneous basis be a thermodynamic ordered

vector- or covector-basis that is spatially varying.

The following is a particularly convenient inhomogeneous basis.

Definition 3.7 (polarization thermodynamic covector basis). Let (e1, . . . , en) be defined as an or-

dered thermodynamic covector basis by the basis transform from the standard dual basis:

[⇢
e

]
i

= [P] j

i

[⇢
"

]
j

, (3.3)

where P is the thermodynamic (1, 1) mixed tensor with matrix representationa

P =

2

66666664

1

B
d

(|µ
2

|�
2

+ |µ
3

|�
3

)

B

B
d

(|µ
2

|�
2

+ |µ
3

|�
3

)

B

B
d

(|µ
2

|�
2

+ |µ
3

|�
3

)

0
1

µ
2

�
2

0

0 0
1

µ
3

�
3

3

77777775

. (3.4)

aFor µ
2

=  h�
n

/2 and µ
3

= - h�
e

/2, we can suppress the absolute values and adjust the signs accordingly.

Because ⇢ is a coordinate-free object, the basis vectors of ("i) must transform to those of (ei)

in a compensatory manner. Similarly, the polarization thermodynamic vector basis for ⌦, (e
i

), is

easily derived. All such relations are shown in Figure 3.1.

From the relations of Figure 3.1, it can be shown that the basis covectors and vectors of the

polarization basis must be spatially varying, and so it is an inhomogeneous basis. Therefore, care

must be taken when computing spatial derivatives in the polarization basis.

Physical interpretations of the components of [⇢
e

]
i

ei (⇢ in the polarization basis) are not the

same as those of [⇢
"

]
i

"i (⇢ in the standard basis). Both components are normalized such that

they are dimensionless (their basis vectors have assimilated the units originally associated with

the components). The second and third components have become the “polarization” (instead of

magnetization) of each spin-species, and takes values in the interval (-1,+1). The first component

is a dimensionless version of the dipole-energy density (since the Zeeman energy densities of

each spin-species have been subtracted from the total energy density), and it also takes values in

the interval (-1,+1).
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Figure 3.1: Basis transformation relations between the standard dual basis ("i) and basis (E
i

) and
the e-dual basis and polarization basis for ⇢ = [⇢

"

]
i

"i = [⇢
e

]
i

ei (left) and ⌦ = [⌦
E

]iE
i

= [⌦
e

]ie
i

(right). The (1, 1) thermodynamic tensor P of (3.4) determines the transformation.

3.3.2 The transport rate tensor field

The transport rate tensor field ˆ� has n2 ⇥m2 = 9 entries. We take this tensor to be diagonal, such

that in the polarization thermodynamic basis, and standard spatial coordinate and time variable,

it can be written

ˆ� =
nX

i=1

nX

j=1

[�
e

]j
i

�
j

i

�
ei ⌦ dr

�
⌦
�
e
j

⌦ dr
�

. (3.5)

Therefore, we assign only three transport rates, which are typically written �
i

for i 2 {1, 2, 3}. In

effect, each quantity is assigned a single rate constant.

3.3.3 Dimensionless spatial coordinates, temporal variables, and ratios

The spatial coordinate r has thus far represented a length with SI unit m and the time variable

t has thus far represented a time with SI unit s. For convenience, we would like to write many

of the equations that follow in dimensionless variables. Therefore, we propose the following

dimensionless spatial coordinate and time variable:

r = (@
r

B(r)|
r=0

/B
d

) r and t = �
2

(@
r

B|
r=0

/B
d

)2 t. (3.6)

Functions of t and r will be denoted with a tilde above, such as eB(r) = B(r). We make an exception

for thermodynamic quantity densities and potentials (e.g. [⇢
e

]
i

and [⌦
e

]i) in order to minimize

notational clutter. When it is not clear from context, clarification will be provided in prose.

When using dimensionless space and time, dimensionless transport rates must be used. The

continuity equation gives us the transformation between the transport rate tensor components in

SI units and those that are dimensionless:
@⇢/@t

@2⇢/@r2
= �

2

. (3.7)

When writing the continuity equation in the dimensionless spatial coordinate and time variable

Rico Picone
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Name Definition

Ratio of gyromagnetic ratios � ⌘ �
3

/�
2

Ratio of transport coefficients � ⌘ �
3

/�
2

Ratio of spin densities � ⌘ �
3

/�
2

Ratio of magnetic fields B ⌘ @
r

eB/B
d

Ratio of ratios c ⌘ B(1+�)/(1+ ��)

Table 3.2: Dimensionless ratios.

use the following transport rate tensor:

ˆ� =
nX

i=1

nX

j=1

[�
e

]j
i

[�
e

]2
2

�
j

i

�
ei ⌦ dr

�
⌦
�
e
j

⌦ dr
�

. (3.8)

A number of dimensionless ratios arise in the transport equations. We define them in Table 3.2.

3.3.4 Thermodynamic potentials and spin-temperature

Definition 2.7 (local thermodynamic potentials) and Definition 3.4 (two-species local entropy

density) give the polarization basis representation of the thermodynamic potential

[⌦
e

]i = -
�
i

�
2

arctanh[⇢
e

]
i

. (3.9)

The units of [⌦
e

]i are dimensionless. The quantity densities [⇢
e

]
i

take values in the interval

(-1,+1), and the thermodynamic potentials take corresponding values in the interval (-1,+1).

Spin temperature is closely associated with ⌦, which can be considered to be the inverse

spin-temperature associated with each quantity ⇢. In the standard basis, the components of ⌦

represent the inverse spin-temperatures of total energy-density ([⌦
E

]1), nuclear magnetic mo-

ment ([⌦
E

]2), and electron magnetic moment ([⌦
E

]3). In the polarization basis, they represent the

inverse spin-temperatures of the normalized dipole energy-density ([⌦
e

]1), nuclear polarization

([⌦
e

]2), and electron polarization ([⌦
e

]3). A large polarization corresponds to a small spin tem-

perature — which matches our expectation from the concept of spin temperature. Conversely,

small potentials correspond to large spin temperatures.

From (3.9), we can solve for for the quantity densities:

[⇢
e

]
i

= - tanh
✓
�
2

�
i

[⌦
e

]i
◆

. (3.10)
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3.3.5 Onsager kinetic coefficient tensor field

The Onsager kinetic coefficient tensor field of Definition 2.8 can be computed using the specific

definitions of entropy function, quantity densities, spatial metric, and transport rate tensor field

provided in this chapter. Written as a matrix in the basis (ei ⌦ dr)⌦ (ej ⌦ dr), we obtain

ˆF =

2

66666664

1+ �

1+�

�
1- ⇢2

1

�
0 0

0 1- ⇢2
2

0

0 0
�

�

�
1- ⇢2

3

�

3

77777775

(3.11)

ˆF is positive-definite, so the transport will respect the second law of thermodynamics.

3.3.6 Spatial transport current

The spatial transport current of Definition 2.9 can be computed by acting with ˆF of (3.11) on the

tensor
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Definition 3.8 (two-species current). The two-species transport current is defined as
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3.3.7 Magnetization transport equations

The magnetization transport equation is presented in coordinates with the remaining key opera-

tion required to derive it in perhaps the most compact basis, the polarization basis.

It can be shown that the codifferential of the current is
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Definition 3.9 (two-species magnetization transport equations). The preferred form of the con-

tinuity equation is in the polarization basis with the dimensionless spatial coordinate and time

variable, which we call the two-species magnetization transport equations:
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If we consider only linear magnetic fields (constant field-gradients) and small dipole energy

density, the magnetization transport equations become
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3.4 Steady state solution and the two-species SMT parameters

A steady state solution to Equation 3.15 is developed by setting each [j
e

]
i

= 0. This yields the

system of ordinary differential equations, written in components of the polarization basis,
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The solution to the system in terms of unknown thermodynamic potential constants ⌦i(0) is
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The corresponding thermodynamic potentials in the polarization dual basis are

⌦1(r) = ⌦1(0) (3.19a)
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⌦1(0). (3.19c)
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Equation 3.18 and Equation 3.19 describe the spatial distributions of ⇢ and ⌦ toward which

magnetization transport drives the system.

3.5 Multi-spin-species Langevin paramagnetic equations

If we assume that the Langevin paramagnetic equation2 describes equilibrium magnetization distri-

butions of each spin-species individually, the unknown constants are found to be
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where T is the temperature of the sample. In this case, we can rewrite the steady state solutions

as
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This result is a set of multi-spin-species Langevin paramagnetic equations. In the general steady state

case, (3.18) and (3.19) are valid, yet have coefficients ⌦i(0) that may be unknown. Those con-

stants are determined in (3.21) and (3.22) with the physical assumption (thermal equilibrium) of

Langevin and Curie. Therefore, if the system is in thermal equilibrium, (3.21) and (3.22) yield its

expected steady state.

2The Langevin paramagnetic equation describes the magnetization of paramagnetic moments distributed in a
system with a given temperature and background magnetic field. It is derived from statistical mechanics, and is the
nonlinear generalization of Curie’s law, which assumes high temperatures. See (Landau and Lifshitz, 1980, p. 154)
and (Kardar, 2007, p. 117).
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3.6 Static and dynamic SMT figures of merit

In order to concentrate magnetization and hyperpolarize a sample, the separative aspect of mag-

netization transport must be understood and leveraged. In this section two figures of merit are

introduced that provide researchers with metrics of separative transport.

One figure of merit of separative transport is the gradient of the steady state nuclear polar-

ization.

Definition 3.10 (static SMT figure of merit). Let  : U ! R be the static SMT figure of merit function
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, (3.23)

where ⇢
i

are the steady state (time-independent) components of ⇢ written in the polarization

basis.

Separative transport of nuclear magnetization requires a gradient in its distribution, and the

greater the gradient, the greater the separation. Equation 3.23 shows that, in the steady state, the

greater in magnitude the product of the two terms c = B(1+�)/(1+��) and [⇢
e

]
1

(dipole energy

density), the greater the separation. When  = 0, no separation occurs, and the flow is exclusively

diffusive.

There are two prospects for increasing . The ratio c is composed of two terms that we will

take in turn: B and (1+�)/(1+ ��). B is the dimensionless ratio
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This ratio is always unity at r = 0. However, if the field has curvature, this ratio can be greater —

specifically, where the gradient of the field is sharper than at r = 0. The ratio (1+ �)/(1+ ��)

approaches unity as the nuclear spin-density becomes much larger than the electron spin-density

(� ! 0), and zero as in the opposite case. This seems to imply that the smallest possible electron

spin-density is advantageous, but that ignores the effect of spin density on the dipole energy

[⇢
e

]
1

, which becomes small with �. This implies an optimal � that depends on the other factors

that affect [⇢
e

]
1

.

The remaining parameter is the dipole energy [⇢
e

]
1

. In thermal equilibrium (which is a steady

state), as we will see below, this depends on �, �, the dipole field B
d

, and the temperature of

the sample. B
d

primarily depends on the spin-densities, and while it is larger for larger � (more

electron-spins), the ratio (1+�)/(1+ ��) penalizes this increase.

Another figure of merit of SMT is the non-diffusive term in Equation 3.15b.

Definition 3.11. Let � : R ⇥U ! R be the dynamic SMT figure of merit function
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where ⇢
i

are the time-dependent components of ⇢ written in the polarization basis.
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Table 3.3: Sign permutations of �
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that yield maximum |�| for the case of a uniform
external magnetic field gradient @

r

B.

The dynamic figure of merit is a measure of the transient separation that occurs before the

steady state. By the product rule, � is the sum of the gradient of each of the three factors in (3.25)

multiplied by the other two. Due to the summation, the sign of each term is crucial. Let each
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For the case of a linear external magnetic field B, �
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= 0 and
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In this case, the magnitude of � is greatest when each factor is larger and they are of the same

overall sign, which occurs in the cases shown in Table 3.3. A similar table can be constructed for

the case of a field B with local curvature (in which case, �
1

may be nonzero).

While exploring this (large) space, the magnitude of each �
i

is important, but the signs of each

must be carefully considered. The optimization of this space is not analytically straightforward

because each factor depends on the others through the dynamics of Equation 3.15. It requires

an extensive numerical study, the beginnings of which are presented in Chapter 5 (Numerical

investigations of the two spin-species model).
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Although  is simpler to analyze than �, it is also less descriptive. Each figure of merit has

its own advantages, and so both should be considered in the study of SMT. There are a number

of strategies that can be used to optimize these figures of merit, and we will use a numerical

approach in Chapter 5.
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Chapter 4

Modeling magnetization transport:
one spin-species

In this chapter, we derive a model of the magnetization transport of a spin system of one

spin-species as a special case of the two-species model of Chapter 3 (Modeling magnetization

transport: two spin-species). This is equivalent to beginning with the definition of an entropy

function and deriving the model using the framework of Chapter 2 (Framework for transport

analysis), which has been explored in Picone et al. (forthcoming) with a slightly different entropy

density function. The one-species model is derived here to demonstrate that the classic results

of Genack and Redfield (Section 4.3) and Fenske (Section 4.4) can be derived from it. This is a

form of validation for the chosen entropy function and both the one- and two-species models.

Moreover, the one-species model is of interest in itself because previously it has not appeared in

a form that applied to systems with high polarization.

We begin by deriving a one-species magnetization transport equation and show its steady

state solution. This model is compared to previous models and found to be equivalent in the

high spin-temperature limit. Finally, the steady state solution is found to be equivalent to the

mass separation equation of Fenske. In this connection to mass separation, SMT for a one-species

system is discussed.

In most of what follows, we use the polarization basis of Definition 3.7 (polarization ther-

modynamic covector basis), the dimensionless spatial coordinate r, and temporal variable t of

Section 3.3.3 (Dimensionless spatial coordinates, temporal variables, and ratios).

4.1 Magnetization transport equation

We begin with the definitions of the previous chapter and show their form for modeling a system

with a single spin-species. We apply the following rules for the dimensionless ratios of Table 3.2
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(Dimensionless ratios.) to each structure:

� ! 0 (4.1a)

� ! 0 (4.1b)

� ! 0 (4.1c)

c ! B. (4.1d)

4.1.1 The transport rate tensor field and the OZ-ansatz

The transport rate tensor field ˆ� of Definition 2.13 (transport rate tensor field) has n2 ⇥m2 = 4

entries. We take this tensor to be diagonal, such that in the standard thermodynamic basis, spatial

coordinate, and time variable, it can be written

ˆ� =
nX

i=1

nX

j=1

[�
e

]j
i

�
j

i

�
ei ⌦ dr

�
⌦
�
e
j

⌦ dr
�

. (4.2)

Therefore, we assign only two transport rates. However, we further assume that the OZ-ansatz of

Definition 2.14 (OZ-ansatz) holds for the system, in effect assigning a single rate constant to both

the dipole energy density and the polarization,

ˆ� = �oz. (4.3)

This is a reasonable assumption for many systems (Genack and Redfield, 1975, p. 83). A diffusion

coefficient may be an appropriate choice for �oz.

We use the same dimensionless spatial coordinate r as before, and a similar dimensionless

temporal variable, substituting �
2

! �oz,

t = �oz (@rB|r=r

0

/B
d

)2 t. (4.4)

When using dimensionless space and time, dimensionless transport rates must be used. The

continuity equation gives us the transformation between the transport rate tensor components in

SI units and those that are dimensionless:
@⇢/@t

@2⇢/@r2
= �oz. (4.5)

When writing the continuity equation in the dimensionless spatial coordinate and time variable

use the following transport rate tensor:

ˆ� =
�oz
�oz

= 1. (4.6)
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4.1.2 Thermodynamic potentials and spin-temperature

The polarization basis representation of the thermodynamic potentials of Definition 2.7 (local

thermodynamic potentials) are

[⌦
e

]1 = - arctanh[⇢
e

]
1

and [⌦
e

]2 = - arctanh[⇢
e

]
2

. (4.7)

The units of [⌦
e

]i are dimensionless. The quantity densities [⇢
e

]
i

take values in the interval

(-1,+1), and the thermodynamic potentials take corresponding values in the interval (-1,+1).

From (4.7), we can solve for for the quantity densities:
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]
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= - tanh[⌦
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]1 and [⇢
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]
2

= - tanh[⌦
e

]2. (4.8)

4.1.3 Onsager kinetic coefficient tensor field

The Onsager kinetic coefficient tensor field of Equation 3.11 can be reduced and written as a

matrix in the basis (ei ⌦ dr)⌦ (ej ⌦ dr), we obtain
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ˆF is positive-definite, so the transport will respect the second law of thermodynamics.

4.1.4 Spatial transport current

From Equation 3.13, we derive the current
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4.1.5 Magnetization transport equation

We derive the one-species magnetization transport equation from Equation 3.15 to obtain
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If we consider only linear magnetic fields (constant field-gradients) and small dipole energy

density, this becomes
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( Bbar =  grad B(rtilde) / B0 )

dropped Gammabar!

still missing Gammabar

still missing Gammabar
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4.1.6 High spin-temperature magnetization transport equation

In the literature, high spin-temperature is often assumed (Genack and Redfield, 1975; Eberhardt

et al., 2007; Ramanathan, 2008). In many applications this is sufficient. High spin-temperature

approximations are equivalent to low-⌦ and low-⇢ approximations, and can be derived from

(4.11) by a first-order power-series expansion of the continuity equation about [⇢
e

]i = 0,
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Under a basis transformation, the transport equations of Genack and Redfield are recovered.1

The equivalence will be discussed in Section 4.3.

4.2 Steady state solution and

a set of one-spin-species Langevin paramagnetic equations

The steady state of Equation 4.11 is developed by setting each [j
e

]
i

= 0. This yields the system of

differential equations, written in components of the polarization basis,
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The solution to the system in terms of unknown thermodynamic potential constants ⌦i(0) is
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(r) = - tanh⌦1(0) (4.15a)
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The corresponding thermodynamic potentials in the polarization dual basis are

⌦1(r) = ⌦1(0) (4.16a)

⌦2(r) = ⌦2(0)-
eB(r)- eB(0)

B
d

⌦1(0). (4.16b)

If we assume that the Langevin paramagnetic equation describes equilibrium magnetization dis-

tributions of each spin-species, the unknown constants are found to be

⌦1(0) =
µ
2

B
d

k
B

T
(4.17a)

⌦2(0) = -
µ
2

B(0)

k
B

T
(4.17b)

where T is the temperature of the sample. In this case, we can rewrite the steady state solutions

1See Genack and Redfield (1975), p. 83. We have assumed a single transport rate.
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as
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This result is a set of Langevin paramagnetic equations. If the system is in thermal equilibrium,

(4.18) and (4.19) yield its expected steady state. In the general steady state case, (4.15) and (4.16)

are valid, yet have coefficients ⌦i(0) that may be unknown. Those constants are determined in

(4.18) and (4.19) with the physical assumptions of Langevin and Curie.

4.3 Equivalence to other models at high spin-temperatures

In Section 4.1.6 (High spin-temperature magnetization transport equation), we asserted that the

linear transport equation developed there is equivalent to the transport equations of Genack

and Redfield.2 Here we show the basis transformation that yields this equivalency. Addition-

ally, another commonly encountered form of the linear model—one expressed in inverse spin-

temperature variables—is shown to be equivalent.

Two methods are used to verify the equivalency of the equations. The first is to relate Genack

and Redfield’s basis to the polarization basis, derive the nonlinear equation in terms of their com-

ponents via Proposition 3.1, and linearize it for small ⇢-quantities. The component transforma-

tion from the (inhomogeneous) Genack and Redfield basis to the (inhomogeneous) polarization

basis is given by the (1, 1)-tensor transformation R : O⇤ ! O⇤, which has the matrix representation

R =
1
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where µ
0

is the magnetic constant.3

The second method is to directly transform the Genack and Redfield equations into (4.13) via

(4.20). Let [⇢gr]
1

and [⇢gr]
2

denote the magnetic susceptibility and magnetization, respectively.4

2Equations (24a,b) of Genack and Redfield (1975) are the equivalent expression. We believe that (24b) has a typo in
the term containing the current (it is missing a negative sign), but it is otherwise equivalent.
3See NIST (2010), p. 1. The appearance of the magnetic constant is due to Genack and Redfield’s definition of

dipole energy-density as the magnetization times -B/µ
0

(Genack and Redfield, 1975, p. 83).
4We use the definitions of Genack and Redfield.
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Both the variables and the equations must be transformed by the relations
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]
i

= [R] j

i

@
t

[⇢gr]
j

. (4.21b)

Both methods have been used to verify the equivalency. The latter method is valid only because

both bases shared the same zero-state, about which each system was linearized.

Eberhardt et al. and others express this high spin-temperature model in terms of inverse spin-

temperatures (Genack and Redfield, 1975; Eberhardt et al., 2007; Ramanathan, 2008). It is tedious

but straightforward to show that these are equivalent to linearized equations in ⇢ that have been

transformed to equations in ⌦ via a linearized version of (4.7), under the following choice of

basis: [⇢st]
1

is the dipole-energy density in J m-3 and [⇢st]
2

is the Zeeman energy density in

J m-3. The component transformation from the standard basis to this (inhomogeneous) basis is

given by the (1, 1)-tensor transformation M : O⇤ ! O⇤, which has the matrix representation

M =

2

664
1 B(r)

0 -B(r)

3

775 . (4.22)

The linearized map of the components of this basis to the components of its thermodynamic

dual basis is given by the (2, 0)-tensor transformation N : O⇤ ! O, which has the matrix represen-

tation

N =
-1

µ2�2

2

664
1/B2

d

0

0 1/B(r)2

3

775 . (4.23)

The ⇢-variable equation is transformed to the ⌦-variable equation by the relations

[⌦st]
i = [N]ij[⇢st]

j

and (4.24a)

@
t

[⌦st]
i = [N]ij@

t

[⇢st]
j

. (4.24b)

In summary, the ⇢-variable and ⌦-variable expressions of Genack and Redfield’s model are

both equivalent to the high spin-temperature limit of the model of magnetization transport here

presented. We consider this to be a form of validation of the models of Chapter 3 and Chapter 4,

and especially the entropy density function of Definition 3.4.

4.4 The Fenske equation

Fenske developed a set of equations to describe the process of mass separation in the fractional

distillation of hydrocarbons (Fenske, 1932). These have become the standard for simple models
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of mass separation.5 In this section, a model will be derived in the manner of Fenske that is

equivalent to a linearized form of the steady state model of one-species magnetization transport

presented above. This will highlight the separative aspect of magnetization transport, even in the

one-species case.

Consider the discrete system illustrated in Figure 4.1. It is analogous to a fractional distillation

column in which “tray” i contains a certain ratio of one substance to another, and tray i + 1

contains a greater concentration. Figure 4.1 shows two “spin” trays in which the two “substances”

are spin-up and spin-down, described by the fractions ⇠
"
i

and ⇠
#
i

. Let the total amount of spin in

a tray be fixed:

⇠
"
i

+ ⇠
#
i

= 1. (4.25)

Through an exchange process among the trays, tray i+ 1 obtains a higher ratio between up-

and down-spin. In a fractional distillation column, concentration occurs by boiling liquid in a

tray, the vapor of which condenses in the tray above and contains a higher concentration of the

product, and fluid flows downward for mass balance. In the spin system, the exchange occurs

through dipole-dipole interactions. Let ↵ > 1 be the relative volatility (typically ↵ is not much

larger than unity). The Fenske model describes this process by the relation6

⇠
"
i+1

⇠
#
i+1

= ↵
⇠
"
i

⇠
#
i

. (4.26)

Let ⇠
"
0

and ⇠
"
0

be the spin fractions of some reference tray (0). Equation 4.26 is a difference

equation that can be solved in the steady-state for the Fenske equation7,8

⇠
"
i

⇠
#
i

= ↵i

⇠
"
0

⇠
#
0

. (4.27)

A continuum solution is found if tray i is taken to be spatially small and mapped to the dimen-

sionless spatial coordinate r (i.e. i ! r). Polarization can be identified as

[⇢
e

]
2

(r) = 2⇠
"
r

- 1 = 1- 2⇠
#
r

(4.28)

Equation 4.27 can be written in terms of polarization. What is more interesting, however, is that

for ↵ near unity, the following equation is approximate (and exact in the limit):

[⇢
e

]
2

(r) = tanh (ar- b)) (4.29a)

5See Kister (1992), p. 114.
6See Halvorsen and Skogestad (2000), p. 35.
7This is not the usual form of the Fenske equation, but it is equivalent.
8The superscript of ↵ is not an index, but an exponent.
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Figure 4.1: Two “trays” containing fractions of up-spin ⇠" and down-spin ⇠#. The fraction ratio
in tray i+ 1 is related to that of tray i by the relative volatility ↵.

where

a =
↵- 1

↵+ 1
and b = - arctanh[⇢0

e

]
2

. (4.29b)

Considering Equation 4.15 (Steady state solution and a set of one-spin-species Langevin param-

agnetic equations), the following identification can be made in the linear limit:

↵ =
1+ @

r

⇢
2

1- @
r

⇢
2

. (4.30)

Recalling the definition of the static SMT figure of merit  of Equation 3.23 (static SMT figure of

merit) and identifying c ! B, we write

↵ =
1+ 

1- 
. (4.31)

This result connects the theory of separative magnetization transport with Fenske-style separa-

tion theory. For separation to occur, the relative volatility ↵ must be non-unity and the SMT

parameter  must be nonzero. These are two statements of the same rule.

This highlights the separative nature of transport in the spin system. Small concentrations of

magnetization develop in the steady-state, and this can be considered separation of up-spin and

down-spin. Significantly increasing || by the methods of Section 3.6 (Static and dynamic SMT

figures of merit) is difficult to imagine for a single species, unlike with a second spin-species as

presented in Chapter 3. This was, in fact, the motivation for the two-species model. SMT occurs

without the second species, but it is difficult to enhance due to too few parameters that can be

manipulated experimentally. The two-species model has more parameters to explore in order to

increase SMT. In particular, the magnetization of one species, which can be easily manipulated

experimentally, can be used to increase SMT.
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Chapter 5

Numerical investigations
of the two spin-species model

The SMT figures of merit developed in Section 3.6 (Static and dynamic SMT figures of merit)

can guide the search of the system parameters for greater separation. The development of the

model of Chapter 3 (Modeling magnetization transport: two spin-species) was preceded by a

rudimentary two spin-species analysis from which an experiment was designed and performed,

as described in Appendix A (Measuring separative magnetization transport). In this chapter,

we numerically investigate the experimental results. Additionally, we investigate a potential

experiment that could be performed to validate the model of Chapter 3.

5.1 Numerical investigation of performed experiment

The experiment was based on an early analysis of SMT that indicated that, in a two spin-species

system, significant separation in one species would occur if a gradient was induced in the dis-

tribution of the other. This gradient is readily achieved by applying a magnetic-resonant field

oscillating at the Larmor frequency of that spin-species, which can either invert or “saturate”

(randomize the direction of the spins) its magnetization, locally, leaving a region of transition

with a potentially large gradient.

Significant local nuclear hyperpolarization was expected in the experiment when the electron

magnetization was saturated by an oscillating field. These gains were to measured by inverting

the nuclear magnetization in the hyperpolarized region and measuring the phase-shift of the

oscillator’s response (see Appendix A). However, these expectations were not observed in the

data. One of the primary motivations of the development of the detailed model of Chapter 3 was

to understand this lack of hyperpolarization. In this section, these results are explained with the

model.
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Symbol Definition Value
B(0) background magnetic field 89.3 mT
@
r

B|
r=0

background magnetic field gradient 44⇥ 103 T m-1

T temperature of the sample 10 K
�
2

nuclear spin density (polystyrene, 96%) 1.513⇥ 1029 m-3

�
3

electron spin density (DPPH, 4%) 8.552⇥ 1025 m-3

B
d

maximum dipole-dipole magnetic field 0.59 mT

Table 5.1: Parameters used to simulate the performed experiment.

The parameters used to simulate the experiment are tabulated in Table 5.1. These approximate

the conditions of the experiment described in Appendix A (Measuring separative magnetization

transport).

We simulate the system with Equation 3.15 (two-species magnetization transport equations).

The effect of the oscillating field is introduced by adding the following term to the [⇢
e

]
3

-equation:

([⇢0
e

]
3

- [⇢
e

]
3

)/⌧, where [⇢0
e

]
3

describes the profile of [⇢
e

]
3

under the effects of the oscillating

magnetic field and ⌧ is some small (dimensionless) time (the smaller it is, the faster the [⇢
e

]
3

approaches [⇢0
e

]
3

).

The boundary conditions are chosen to be [j
e

]
i

= 0, in accordance with Equation 3.17 (Steady

state solution and the two-species SMT parameters). This is true to the experimental conditions at

the left-hand boundary, consider this boundary in the experiment was the surface of the sample,

and therefore no flow can escape. The right-hand boundary is somewhat artificial (the sample

is thick enough to be considered semi-infinite). However, if, in simulation, it is chosen to be

far-enough away from the dynamics, it has no significant effect. The boundaries are chosen to be

at r = ±100 nm or r ⇡ ±7.512.

The initial conditions were chosen to be the thermal equilibrium distributions of Equation 3.21

(Multi-spin-species Langevin paramagnetic equations), with the exception of a region of near-

zero electron magnetization imposed by the oscillating magnetic field. This ⇢
3

-distribution was

maintained throughout the simulation by including the ⌧-term described above.

The equations were simulated for t 2 [0, 1] s or t 2 [0, 22.7] with a region of near-zero electron

magnetization at the surface of the sample, which is consistent with the experimental protocol.

Figure 5.1 shows the main results of the simulation: the spacetime-evolution of ⇢ and j. The

explanation for the lack of detected signal in the experiment is readily apparent from the plot

of ⇢
2

: very little separation occurred. From the rudimentary analysis that guided the experimental

design, the nuclear polarization ⇢
2

was expected to accumulate a negative polarizations near the

surface of magnitude greater than the initial polarization. However, no significant amplification

of the signal is predicted, which is consistent with the experimental result.
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Figure 5.1: Simulation of the performed experiment. The spacetime-evolution of the spatial dis-
tributions of ⇢ and j in the polarization basis is shown. Time varies logarithmically (more values
early on), with the color of the traces varying with t in seconds: 0 1. The dipole
energy density ⇢

1

quickly reacts to the electron polarization ⇢
3

gradient. The nuclear polariza-
tion ⇢

3

responds relatively slowly. In the experiment, the nuclear polarization was inverted and
measured at time t = 1 s.

We see that the nuclear current of Definition 3.8 (two-species current),

j
2

= -c
�
1- ⇢2

2

�
arctanh ⇢

1

- @
r

⇢
2

,

starts high and dissipates. This is because the developing gradient of nuclear polarization @
r

cancels the dipole energy density ⇢
1

term that had been driving the nuclear polarization current.

This is equivalent, in the equation for ⇢
2

, to the diffusive term matching the separative term.

Recall that the separative term is concentrating the distribution of ⇢
2

(“hyperpolarizing”), while

the diffusive term is “smoothing” it.

Figure 5.2 shows the temporal evolution of the dynamic figure of merit � and its cumulative

temporal integral. The separative transport quickly stalls, allowing the diffusive term to cancel it.

The reason that � is very similar to j
1

is that j
1

is proportional to @
r

⇢
1

, which also appears in �.

This means @
r

⇢
1

is the dominant term in �. That is, in this case, the dynamic separative transport

is dominated by the gradient of the dipole energy density.
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Figure 5.2: Simulation of the performed experiment. The time-evolution of the spatial distribu-
tions of the dynamic figure of merit � and its cumulative temporal integral are shown. Time
varies logarithmically (more values early on), with the color of the traces varying with t in sec-
onds: 0 1.

5.2 Numerical investigation of potential experiments

In this section, we numerically investigate an experiment that could be performed to validate the

two-species model. In it, the polarization in a slice of the sample is doubled in approximately

3 ms. If a signal can be measured from an inversion of the slice before this doubling, twice that

signal will be measured afterwards.

The parameters used to simulate the experiment are tabulated in Table 5.2. These values are

typical for a magnetic resonance force microscopy (MRFM) experiment. Notice that the magnetic

field and its gradient are greater than those used in the last section. The greater field yields a

greater thermal equilibrium polarization, making it easier to measure a signal before any SMT

is induced. The greater gradient generates hyperpolarization faster. Both are advantageous in

practice.

As before, we simulate the system with Equation 3.15 (two-species magnetization transport

equations) and introduce the effect of the oscillating field by adding the term ([⇢0
e

]
3

- [⇢
e

]
3

)/⌧

to the [⇢
e

]
3

-equation. Similarly, the boundary conditions are [j
e

]
i

= 0 and the boundaries are at



38

Symbol Definition Value
B(0) background magnetic field 2.7 T
@
r

B|
r=0

background magnetic field gradient 4.4⇥ 106 T m-1

T temperature of the sample 10 K
�
2

nuclear spin density (polystyrene, 99%) 1.561⇥ 1029 m-3

�
3

electron spin density (DPPH, 1%) 2.138⇥ 1025 m-3

B
d

maximum dipole-dipole magnetic field 0.48 mT

Table 5.2: Parameters used to simulate the proposed experiment.
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Figure 5.3: Simulation of the proposed experiment. The time-evolution of the spatial distributions
of ⇢ and j in the polarization basis is shown. Time varies logarithmically (more values early on),
with the color of the traces varying with t in seconds: 0 0.003. The two electron
polarization (⇢

3

) inverted slices create a variation in dipole energy density (⇢
1

), which drives the
nuclear SMT. We see a local doubling of nuclear polarization near the origin.

r = ±50 nm or r ⇡ ±458.

The initial conditions were chosen to be the thermal equilibrium distributions of Equation 3.21

(Multi-spin-species Langevin paramagnetic equations), with the exception of two regions of in-

verted electron magnetization imposed by the oscillating magnetic field. This ⇢
3

-distribution was

maintained throughout the simulation by including the ⌧-term described above.

Two adjacent regions of the electron polarization are inverted away from the boundaries of

the sample, which is unlike the single region of near-zero polarization induced at the surface in
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Figure 5.4: Simulation of the proposed experiment. The spacetime-evolution of the spatial distri-
butions of the dynamic figure of merit � and its cumulative temporal integral are shown. Time
varies logarithmically (more values early on), with the color of the traces varying with t in sec-
onds: 0 0.003.

Section 5.1. Figure 5.3 shows the predicted spacetime-evolution of the distribution of ⇢ and j.

Near r = 0, in a slice of width approximately 5 nm, a doubling of the nuclear polarization occurs

in 3 ms. This corresponds to a doubling in signal for the protocol described in Appendix A

(Measuring separative magnetization transport).

However, we see that the nuclear current quickly diminishes, as before. Once again, the

dipole energy stagnates and diffusion, increasing due to the increased curvature, becomes strong

enough to counterbalance its separative effects.

The dynamic SMT figure of merit � and its cumulative integral, shown in Figure 5.4, tell a

similar story to that of the last section. The gradient of ⇢
1

dominates the dynamic separation,

which eventually stagnates. This stagnation allows the diffusive term to counter the separative

term and drive the system toward an equilibrium.
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Chapter 6

Conclusions & prospects

A study of separative magnetization transport for one- and two-species spin systems has

been presented. This thesis is not the last word on the subject, but the first. The groundwork for

further study is now laid upon a well-posed foundation of the following elements.

framework for transport analysis In Chapter 2 we developed a theoretical framework for trans-

port analysis (Proposition 2.2) that can be applied to model the transport of systems with

any number of globally conserved quantities in any spatial configuration by supplying the

following (as described in Remark 2.2):

(a) a spatial manifold, metric, and local coordinates;

(b) globally conserved thermodynamic quantities that define local quantity densities;

(c) a local entropy density function; and

(d) a transport rate tensor.

This framework guarantees that models derived from it will respect the four laws of ther-

modynamics (Proposition 2.1).

two-species model In Chapter 3 we derived an analytically tractable model (Proposition 3.1) of

systems with two spin-species and (therefore) three conserved quantities. This model ex-

hibits both diffusive and separative qualities, and so it can be used to explore the possibility

of harnessing separative magnetization transport for hyperpolarizing nuclear magnetiza-

tion. As a model that is valid for high-polarization regimes, it can be used for systems

that have been hyperpolarized by other means, such as dynamic nuclear polarization. In

Chapter 4 a one-species model is derived as a special case of the two-species model. It is

also valid for high-polarization regimes. In the limit of low-polarization, it is shown to be

consistent with the model of Genack and Redfield, which is understood as a validation of

the models from which the low-polarization model was derived.

entropy density function As described in Remark 2.2, an entropy function is required to model

the system with the framework of Chapter 2. In Section 3.1, we presented such an entropy
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density function to describe the two-species system. It was used to derive the two-species

model of Proposition 3.1. Although the dynamical behaviour of the model is not particu-

larly sensitive to the functional form of the entropy (of course, it must satisfy the require-

ments of the framework), the analytic tractability of the model is. The entropy function of

Definition 3.4 yields a model that is simple enough to gain insight from analysis.

An alternative entropy function is presented in Appendix B. When the dipole energy of a

system is small compared to unity, which is most often the case, the two entropy density

functions yield nearly identical dynamics. When the dipole energy is large, the physical

justification of the function presented in Appendix B may be superior. Both entropy density

functions can be shown to predict the classic result of Genack and Redfield, as demonstrated

in Chapter 4 and Picone et al. (forthcoming).

figures of merit In Section 3.6, we identified a static and a dynamic figure of merit. These figures

of merit allow the parameter-space of a two-species system to be explored in search of

greater SMT. The static figure of merit is derived from the steady state solution of the

two-species model. It is a metric for the slope of the steady state distribution of nuclear

polarization. The dynamic figure of merit is derived from the dynamic two-species model.

It is a metric for the separative (non-diffusive) term in the nuclear polarization equation.

numerical investigations In Chapter 5, the two-species model was used to simulate the experi-

ment described in Appendix A. The results explain the null result of the experiment. A

new experiment was proposed and simulated that was predicted to have a measurable hy-

perpolarization from SMT. Such an experiment would be a validation of the two-species

model and a step toward greater hyperpolarization through SMT, with the goal of applying

it to significantly enhance magnetic resonance technologies.

Much of the preceding has been science, and much of what lies ahead for separative magneti-

zation transport is engineering. Giddings’ words frame the task so well, they are repeated (from

Section 2.1):

Separation is the art and science of maximizing separative transport relative to dis-

persive transport.1

Now that we better understand magnetization separation, we can begin harnessing it for hyper-

polarization. A number of possibilities present themselves. Separative transport is eventually

overtaken by diffusive transport, as described in Chapter 5. The following methods may mitigate

this occurrence.

applying pulse sequences Magnetic resonance technologies have often required pulsing the os-

cillating magnetic field. This may allow a release of the separation/diffusion gridlock.

1See Giddings (1991), p. 10.
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increasing magnetic field curvature The dimensionless ratio c is a multiplying factor of the sep-

arative transport. If the background magnetic field B has no curvature (a linear field), the

c is at most unity. However, with significant curvature, an amplification of the separative

transport would occur.

varying spin density The analysis above assumed uniform spin densities for each species. If

these densities were varied, selective magnetization barriers may form. The analysis above

is readily adopted to the sort of analysis required to explore this method.

6.1 Prospects for technology development

The theoretical framework of Chapter 2 and the two-species model of Chapter 3 have laid the

groundwork for further study of separation magnetization transport. The engineering applica-

tions of this work include many magnetic resonance technologies, including magnetic resonance

force microscopy (MRFM), nuclear magnetic resonance (NMR) spectroscopy, and magnetic reso-

nance imaging (MRI). With all these technologies, greater signal-to-noise ratios (SNR) yield faster

images with higher resolution. Hyperpolarization through SMT may yield appreciable increases

in polarization, which is directly proportional to increases in SNR.

An alternative technology, dynamic nuclear polarization (DNP), has shown experimental

progress. Its effects are diminished, however, in technologies, such as MRFM, in which large

field gradients are present. DNP uses an entirely different mechanism to create hyperpolariza-

tion, which is apparent by the fact that polarization is not conserved, whereas in SMT, conserva-

tion is assumed. So hyperpolarization via SMT and DNP are complementary technologies, and it

may be the case that for certain magnetic resonance technologies SMT, DNP, or some combination

of both will yield the most significant progress.

6.2 Experimental roadmap

We conclude this study with an experimental roadmap for separative magnetization transport

as a method of hyperpolarization. Although the model presented here is in agreement with the

experimental results, it remains to be fully experimentally validated. The following objectives

serve as a roadmap for future experimental investigation of SMT.

objective I: validate SMT model A validation of the SMT model may be in the context of any

spatial scale. The elements involved in such an experiment would include: (i) the manipula-

tion of one spin-species and (ii) the measurement of a resulting concentration of magnetiza-

tion — of either spin species — that can be shown to be the result of (i). The “concentration”
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should be demonstrably greater than would be expected from non-SMT mechanisms such

as background magnetic field and dynamic nuclear polarization.

objective II: explore SMT An exploration of the SMT model would include its validation, but

would go further. While some features of the model will be present in a validation experi-

ment, many may not be obvious. For instance, exploration might include a measurement of

the transport coefficients, size of the affected region, and duration during which the effect

increases and diminishes.

objective III: enhancement of SMT An enhancement of SMT would include both the model’s

validation and directed exploration. This objective has in mind not merely descriptive sci-

entific inquiry, but also its teleological function in engineering. An experiment with this

objective would seek to describe, for instance, the domains in which certain parameters can

increase the SMT effect. This objective is dependent on the first two, but also the fourth in

that those for whom this is an objective must have in mind, finally, harnessing SMT.

objective IV: harnessing SMT Harnessing SMT would require the validation and exploration

SMT, and would likely build on experiments that showed methods of enhancing SMT.

These experiments are at the boundary between technology development and applica-

tion. Among the numerous possible uses of SMT, enhancing magnetic resonance force

microscopy (MRFM) is an exemplar. MRFM is already equipped with much of the appara-

tus required for such an experiment and its localized detection and high sensitivity make it

an attractive choice.
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Appendix A

Measuring separative magnetization transport

In this chapter, we will describe the measurement of SMT in general and in the specific case of

an experiment performed as part of this thesis. The key objective is to lay an experimental foun-

dation for a roadmap to enhancing magnetic resonance technologies through hyperpolarization

by SMT.

A.1 Experimental objectives

The objectives of the experiment are listed below.

O1. Determine if the effects of SMT can be measured in the parameter-space which the early

models predicted.

O2. Measure a nuclear spin signal enhanced by SMT.

O3. Characterize the signal by exploring a parameter-space.

O4. Obtain measurements sufficient to verify the theoretical model of SMT.

The experiment was designed to meet all four objectives. The experiment yielded results that

met the first objective: the effects of SMT were not observable in the parameter space predicted

in the early models. The results were inconclusive for the other objectives, but the theoretical

work performed since has been motivated by what was learned. Early models predicted an effect

in the region of parameter space probed in the experiment. After this prediction was verified to

be inaccurate, we began seeking a more thorough model. The results of Chapter 5 (Numerical

investigations of the two spin-species model) verify the experimental results: no enhanced signal

should have been observed.
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Figure A.1: A schematic of the MRFM device (not to scale).

A.2 Description of experimental apparatus

The experimental apparatus was a magnetic resonance force microscope, modified such that

both radio wave and microwave magnetic fields could be applied for magnetic resonance. Each

subsystem of the apparatus is described.

A.2.1 Vacuum and cryogenics

A turbomolecular pump (Oerlikon Leybold Turbotronik NT-10) evacuated a flow cryostat (Janis

Research Systems, modified model ST400) to approximately 10-5 Torr. Without vibration iso-

lation, the cryostat was rigidly attached to a concrete support column of the building. Optical,

radio wave, microwave, sample-position, magnetic tip control, and temperature-sensing signals

were transmitted into and out of the cryostat through vacuum feedthroughs. A module contain-

ing the sample and cantilever was mechanically attached to the cold head of the cryostat in a

manner that minimized contact area for acoustic vibration isolation. The module was attached

thermally with (99.999% purity) copper braids.

The cryostat was cooled with a flow of liquid helium (LHe), which was transferred from a
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Dewar via a flexible vacuum-jacket transfer line. At high flowrates, the boiling and flow of the

LHe generated vibrations which dominated other noise sources in the experiment. Low flowrates

and a copper-mesh heat exchanger affixed to the end of the transfer line largely mitigated this

source of mechanical noise.

A.2.2 Cantilever

The mechanical resonator (detector) was a commercial force microscope cantilever (Park Scientific

Instruments, Microlever C) with spring constant k of 0.014 N/m. It had an open, triangular shape

with length 320 µm, arm width 22 µm, and thickness 0.6 µm. At room temperature (293 Kelvin),

the resonance frequency was 7981 Hz and the quality Q was 19000. At a cryostat temperature of

13 Kelvin, the resonance frequency was 8032 Hz and the quality Q was 51000.

A.2.3 Optics

A single-mode fiberoptic interferometer measured the position of the cantilever beam. A connec-

torized 90:10% optical coupler (Gould) joined the four optical fiber arms. Light from the end of

one arm reflected from the cantilever (~50 µm from the fiber) was interfered with light reflect-

ing from the end of the fiber to obtain a signal. A diode laser (Sharp LTO23, pigtail connector,

780 nm) with coherence length one millimeter produced 200 µW of coupled optical power. A

photodiode amplifier (New Focus Model 2001) converted the photonic signal to an electrical sig-

nal, which was further amplified and filtered (Stanford Research Systems Model SR 560) with a

high-frequency roll-off of 100 kHz.

A.2.4 Sample positioner

The piezoelectric tube actuator had rails affixed to one end upon which a cart is kinematically

mounted such that it had a single degree of freedom, along the rails (in the z-direction). An

optical fiber was affixed to the cart, and the sample was attached to the end of the fiber. Stick-slip

control enables course-grain positioning. Precision positioning in three-dimensions was used

over small distances.

A.2.5 Radio wave and microwave synthesis and modulation

Two disparate frequency-bands of alternating magnetic field B
1

were necessary for the experi-

ment. A single three-turn, hand-wound coil delivered the signal. The 120 µm-diameter coil was

wound from 30 µm wire and potted in epoxy in order to minimize inter-coil mechanical motion

leading to vibrations.
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Figure A.2: A schematic of the system that generated the alternating magnetic field.

Figure A.2 is a schematic of the system that generated the alternating magnetic field. The

operating range of the high-band (microwave) alternating magnetic field frequency was [2, 3.5]

GHz and the low-band (radio wave) range was [3, 5] MHz. The high-band was generated and

amplitude-modulated with a frequency synthesizer (Hewlett Packard, Model HP83731A). The

low-band was generated and modulated as an arbitrary waveform with a general-purpose func-

tion generator (Stanford Research Systems, Model DS345). Each of the signals was separately

amplified (Ophir RF, Models 5181 (high-band) and 5046 (low-band)). The combination of these

signals was achieved with a combiner (Werlatone, Model DP 8679-10).

The input and output impedances of the system are all 50 Ohms, but the coil is “untuned,”

and significant reflection is anticipated and mitigated with a combination of circulator on the

high-band side and amplifier specifications. The high-band amplifier has an internal output

isolator and the low-band amplifier was designed to handle full reflection.

A.2.6 Sample

A solid solution of diphenylpicrylhydrazyl1 (DPPH) in polystyrene2 (4:96% by mass) was pre-

pared as a dilute sample. The free-radical DPPH provided unpaired electron spins. Benzene was

used as a solvent, which was allowed to evaporate from a smear of solution on a microscope

slide. A small square was cut from the smear and affixed with epoxy to the end of the fiber

attached to the sample-positioning cart.

11,1-diphenyl-2-picrylhydrazil, Sigma product number D-9132.
2Aldrich catalog number 18,242-7.
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Figure A.3: Locating the sample of the surface by measuring the electron-resonant signal at
various sample positions.

A.2.7 Control

There are a few feedback control systems in the microscope system: a simple cryostat tem-

perature controller to hold the temperature steady, a gain-scheduled optimal controller of the

cantilever’s position (Garbini et al., 1996; Bruland et al., 1996), and a positioning controller of the

sample/cart’s position (Peeples, 2004).

A desktop personal computer running LabVIEW (National Instruments) controls every aspect

of an experimental run through a hybrid USB/LAN/GPIB (IEEE 488) network, over which the

computer sends commands to and receives data from a variety of instruments.

A.3 Experimental protocol

In this section, the experimental protocol is presented. An initialization protocol, at times requiring

manual input, was required to cool down the system, bring the sample near the cantilever, and

verify that the sample would yield an electron-resonance signal. Furthermore, a measurement pro-
tocol, primarily programmed into the LabVIEW software, determined the series of measurements

called runs.

A.3.1 Initialization protocol

The following series of steps provides an outline of the initialization protocol.
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Figure A.4: A timeline of an experiment.

cooldown The experiment was cooled to 13 Kelvin over the course of a few hours. Once the

transfer line of the liquid helium dewar was connected to the cryostat, the helium began

to flow. After the temperature of the cryostat began to decrease, the gas-relief valve of

the cryostat was opened and plumbed to the bottom of a column of water, which kept the

dewar-pressure constant throughout the remaining cooldown process. When the tempera-

ture reached 13 Kelvin, the helium flowrate was decreased, a small temperature-controller

was implemented (with a heating coil in the cryostat), and a period of time passed while

the system came to thermal equilibrium (several hours). The dewar remained cold for

approximately 48 hours after the initial cooldown.

measure parameters with sample away from cantilever The sample was stepped (via stick-slip



53

nuclear-resonant alternating magnetic field sweep sweep depth

nuclear-resonant alternating magnetic field sweep thickness (20, 80 nm)

electron-resonant slice depth (shallow, deep)

electron-resonant alternating magnetic field frequency (2.5, 3 GHz)

electron-resonant alternating magnetic field duty cycle (0.05, 1)

nuclear-resonant alternating magnetic field repetition rate (1, 1/3 Hz)

nuclear-resonant alternating magnetic field sweep thickness (10, 40 nm)

Figure A.5: Abbreviated parameter tree (first value nominal)

control) toward the cantilever until it made contact. The sample was then withdrawn to a

distance sufficient to assure no sample-effects on the cantilever. In this position, a number

of cantilever properties and instrument gains were measured. The noise was also evaluated,

and found to be nearly thermally limited. The noise is quantified as a “noise temperature”

which, using estimates of the properties of the cantilever, computes the theoretical tem-

perature that would yield measured cantilever amplitude fluctuations through Brownian

motion. Measurements yielded estimates of 13 – 20 Kelvin, indicating that the dominant

noise mechanism was thermal noise, and that measurement noise was small.

approach cantilever with sample Using stick-slip control for coarse-grain positioning, approach

the cantilever with the sample. The goal is to be as close as possible without contacting the

cantilever and sample.

measure electron-resonance Scan the sample and attempt to measure an electron-resonant sig-

nal. Some iteration may be required.

locate the surface of the sample Once an electron-signal is established, scan and measure the

signal until the surface of the sample is identified. The goal is to course-position the sample

relative to the sensitive slice such that it can be linearly (fine-grain) scanned toward the

cantilever — effectively moving the sensitive slice deeper into the sample — and scanned

away from the cantilever — effectively moving the sensitive slice outside the sample (in order

to make a null measurement of the coherent parasitic excitation). See Figure A.3.



54

0 1 2 3 4 5 6 7 8 9 10111213141516171819

−40

−20

0

20

40

60

80

100

20    20    
20    

20    
20    

20    
20    

20    
20    

20    
20    

20    
21    

21    
21    

21    
21    

21    
21    

21    

set

q
e
le

,n
u
c (

n
m

)

Figure A.6: An illustration of the nuclear-spin resonant frequency/spatial sweeps of Run 618.
The abscissa varies the set (sets occur temporally in series) and the ordinate varies the distance
from the center of the electron-resonant slice in the sample. The spatial interval through which a
nuclear-resonant slice will travel during an inversion pulse within a set is depicted by a colored
arrow, labeled with the number of nanometers traversed. This figure can also be used as a legend
for the plots that follow.

A.3.2 Measurement protocol

The general strategy for measuring an SMT signal was to (1) induce a gradient in the electron spin

polarization by saturating it with an electron-resonant alternating magnetic field in a region near

the surface of the sample; (2) allow the electron-proton system to equilibrate, which the early

models predicted would yield a nuclear hyperpolarization near the surface of the sample; (3)

adiabatically invert the hyperpolarized nuclear-spins with a nuclear-resonant adiabatic inversion

pulse; (4) drive the cantilever beam at its resonance; and (5) measure the resulting frequency shift

of the response of the cantilever.

A previously prepared definition file was loaded for each run, and was executed automatically

by the software. Within a run, a number of sets were executed, each set containing a different set

of parameters (often a single parameter varied among the sets, like the sweep-depth of a nuclear-

resonant alternating field sensitive slice). Within a set, a number of repetitions were executed for

averaging, with some interval of time in between repetitions to allow the spin-cantilever system

to return to equilibrium.
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A timeline of a set is illustrated in Figure A.4. A description of this timeline will familiarize

the reader with the primary elements of any set. The hyperpolarization stage includes electron-

resonant rotating magnetic field irradiation, but no nuclear-resonant inversion pulses. In some

runs, the electron-resonant field was pulsed. During this stage, SMT occurs such that nuclear-

spins near the surface of the sample become hyperpolarized. This is a convenient time for “null”

nuclear-resonant field pulses which sweep regions strictly outside the sample (as shown in the

figure). After this stage (typically one second or some fraction thereof), an event introduces a new

stage: a nuclear-resonant inversion pulse is swept through a region adjacent to the surface of the

sample — presumably where the hyperpolarization will have formed — and invert the nuclear-

spins. This inversion will cause a change in the spring-like moment of the nuclear spins on

the cantilever, which is being driven at a constant amplitude (typically ten nanometers). This

change will induce a shift in the resonance frequency of the cantilever, which yields a shift in the

measured phase of the response of the cantilever.

The parameter space was explored in the following manner. We ranked the priority of the

variation of each parameter and adaptively searched. The searched parameters are shown in

descending order of priority in Figure A.5. Not all, but many, possible parameter-combinations

were explored.

A.4 Cantilever response

To measure the spatial and temporal distribution of nuclear magnetization is our aim, which is

realized indirectly by monitoring position of the cantilever as we manipulate the nuclear magne-

tization. Our model is incomplete without a description of the interaction of the cantilever and

nuclear magnetization, so one is here presented.

From (Dougherty et al., 2000, p. 108), we can estimate the pressure (force per unit slice area)

exerted by the magnetic moments of an ensemble of nuclear spins on magnetic tip of the can-

tilever to be

P =

Z1

-1
(@

z

B(z)) [⇢
"

]
2

dz (A.1)

where [⇢
"

]
2

is the magnetic moment of nuclear spins.

A.4.1 Dynamics of the cantilever

We can write a Hamiltonian for the cantilever as

H(q,p) = p2

2m
+

1

2
kq2 + V⇤(q, t), (A.2)
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where q and p are respectively the position and momentum coordinates, k is the “native” spring

constant of the cantilever when the nuclear magnetization is in equilibrium,3 and V⇤(q, t) is a po-

tential function associated with the interaction energy between the magnetic tip of the cantilever

and the nuclear magnetization of the sample.

Writing Hamilton’s equations, we obtain

q̇ =
@H

@p
=

p

m
(A.3a)

ṗ = -
@H

@q
= -kq-

@V⇤

@q
, (A.3b)

which are easily combined as

mq̈+ kq = -
@V⇤

@q
. (A.4)

We need an expression for the interaction energy between the tip and sample V⇤(q, t). A suitable

expression can be derived from an examination of the interactions of the spins with the cantilever,

considered as magnetic dipole moments.

The force exerted on a single magnetic moment m
0

(taken to be the cantilever tip) by N others

(taken to be sample spins) is (Griffiths, 1999, 258)

F = r (m
0

· B) (A.5)

where B is the field generated by the N sample spins. By the form of this equation, we easily

recognize the interaction Hamiltonian as the negative of that of which the gradient is taken,

Hint = -m
0

· B. (A.6)

The magnetic field at the magnetic tip generated by a dipole m
i

at position r
i

relative to the

magnetic tip is (Griffiths, 1999, 246)

B =
µ
0

4⇡

NX

i=1

3 (m
i

· r̂
i

) r̂
i

-m
i

r3
i

(A.7)

= -
µ
0

4⇡

NX

i=1

m
i

r3
i

-
3 (m

i

· r
i

) r
i

r5
i

(A.8)

We combine (A.6) and (A.8) to obtain the interaction Hamiltonian4,

Hint =
µ
0

4⇡

NX

i=1

m
0

·m
i

r3
i

-
3 (m

0

· r
i

) (m
i

· r
i

)

r5
i

. (A.9)

Considering the one-dimensional case in which all moments are considered to be aligned with

3Note that k = m!2

n

, where m is the effective mass of the cantilever and !
n

is the natural angular frequency when
the nuclear magnetization is in equilibrium.
4This is in accordance with Slichter (Slichter, 1996, 66) who includes the spin-spin interactions in his Hamiltonian.
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this direction,
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= -
µ
0

2⇡
m

0

Z1

0

[⇢
"

]
2

(t, z)
(q+ h+ z)3

A dz (A.11)

where h locates the sample surface relative to the origin of q, z is the depth into the sample (see

Figure A.7), and A is a characteristic area, here taken to be the area of the electron resonant slice.

Since we are attempting to gain an understanding of the effect of the interaction between the nu-

clear spins and the cantilever, we would benefit by extracting q from the integral in (A.11), which

can be achieved with a Taylor series expansion of the coefficient of [⇢
"

]
2

(t, z) in the integrand in

q about q = 0,

(q+ h+ z)-3 = (h+ z)-3 - 3(h+ z)-4q+ 12(h+ z)-5q2 + · · · . (A.12)

We take only the terms constant, linear, and quadratic in q, since these will be reduced in order in

the equation of motion and higher powers can be ignored because q is small. So (A.11) becomes
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(A.13)

Choosing this approximation of the Hamiltonian spin-tip interaction to the potential function

V⇤, we obtain
@V⇤
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= -A
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dz

◆
(A.14)
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which enters the equation of motion (A.4) as

mq̈+ kq = A
µ
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(A.15)

or, collecting terms,

mq̈+ (k+ �k)q = f (A.16)

where

�k = -12A
µ
0

⇡
m
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(t, z)
(h+ z)5
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and

f = -A
3µ

0

2⇡
m
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0
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(h+ z)4

dz. (A.18)

We can interpret (A.17) as a shift in natural frequency �!
n

. A first order Taylor series expan-

sion of �!
n

in �k about zero is

�!
n

=

r
k+ �k

m
-

r
k

m
(A.19a)

u �k

2
p
km

. (A.19b)

Equation A.19 represents the dynamic interaction between the cantilever and sample spins which

we seek to measure.

Assuming a standard model of damping on the oscillator, a leading order approximation of

the expected phase shift is

�� u 2Q

!
n

�!
n

u Q

k
�k. (A.20)

This expression can be found by finding a Taylor series expansion about !
n

of the phase between

input force and output motion of a damped harmonic oscillator.

A.5 Experimental results

The experimental results presented here5 are representative of the broader result that, in the

parameter space searched, no SMT was observed.

Following the general measurement protocol described above, Run 618 had the specific proto-

col: (1) a gradient in the electron spin polarization was induced by saturating it with an electron-

resonant alternating magnetic field with frequency 2.5 gigahertz in a region of the sample near

its surface; (2) after allowing time for SMT, adiabatically inverting the hyperpolarized nuclear-

spins with a nuclear-resonant adiabatic inversion pulse (varying from 4.3 to 4.7 megahertz with

5A comprehensive report of the data is available online at
https://www.dropbox.com/s/gwnnmmhyycm8bh7/experiment_DNP006_DawnThree.pdf (300 pages).

https://www.dropbox.com/s/gwnnmmhyycm8bh7/experiment_DNP006_DawnThree.pdf
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Figure A.8: Polar plots of the data from Run 618. (a) A polar plot is shown with magnification
inset detailing the data, which is averaged-over 125 one-second intervals, each beginning with a
nuclear inversion-pulse, such that the mean one-second time-response is described (implicitly) in
the succession of the points of each color. The error boxes represent one standard deviation. The
colors correspond to those of Figure A.6. (b) The same data is plotted with a “stretched” phase,
such that small differences can be observed.

sweeps of 64 kilohertz) of magnitude approximately 1.25 to 1.35 millitesla; (3) driving the can-

tilever to oscillations of amplitude 10 nanometers; (4) and measuring the amplitude and phase of

the response of the cantilever.

Due to the spatially varying magnetic field, a frequency sweep in the nuclear-resonant al-

ternating magnetic field frequency will correspond to a spatial sweep of the nuclear-resonant

resonant slice according to the magnetic resonance condition. For Run 618, the data for which

will here be presented, Figure A.6 illustrates the nuclear-resonant sweeps in relation to the sta-

tionary electron-resonant slice. Note that this figure can also be used as a legend for the plots

that follow it.

The magnitude and phase of the response of the cantilever was recorded for the duration

of a nuclear-resonant sweep and for a time considered long-enough for the system to return

to equilibrium (one second). One hundred twenty-five repetitions of each measurement were

performed. Averaging yielded good estimates of each measurement. The data is presented in

Figures A.8 and A.9 as polar plots and variations of magnitude and phase versus time (respec-

tively). The targeted signal was a fast phase-shift (and lesser magnitude-shift) in the response of

the cantilever. This was not observed, but a low upper-bound was established for the parameter-
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Figure A.9: Variations in amplitude and phase over time of the data from Run 618. With mean
subtracted, from each set, and with 125 averages, the data is shown to have very little devi-
ation from its average — that is, no SMT-effects were observed, but a small upper-bound was
established.

space explored.

Figure A.8 shows that the measurements were very precise, and that they would have de-

tected even small fractions of a degree of phase-shift (e.g. a tenth of a degree would have been

easily distinguished). A slight long-term secular drift was observed in the measurements, as is

apparent in the wandering centers of each data-cluster or “dandelion.” This is believed to be in-

consequential for these experiments because relatively (very) fast secular variations are the target

measurements.

Figure A.9 shows the variations in the magnitude and phase as functions of time. The mean is

subtracted from each data-set, such that the long-term secular drift does not affect the represen-

tation. The figure shows no significant variation from zero, which confirms the null result. Note,

once again, the high-precision of the measurements. Based on early models, this measurement

would have detected the magnitudes of signal predicted.
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Appendix B

An alternative entropy density function

The entropy density function of Definition 3.4 (two-species local entropy density) is not the

only function that meets the criteria of Definition 2.6 (local entropy density) and describes a

two-species system. It is a testament to the robustness of the theory that it does not depend

significantly on such choices. In this appendix, we present an alternative entropy density function

that may be used to derive a similar model to that presented above. However, this function is

analytically intractable, whereas the function of Definition 3.4 yields analytically well-behaved

mathematical structures.
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Definition B.1 (alternative two-species local entropy density). Let �
2

and �
3

be the temporally

invariant volumetric spin densities (spins per unit volume), B be the external spatially varying

magnetic field, B
d

be the maximum dipole magnetic field,a and µ
2

and µ
3

be the magnetic

moments of individual spins of each species.b Additionally, let the linear forms  1, 
2

, 
3

2 O

be

 1 =
E
1

+B(r) E
2

+B(r) E
3

B
d

(|µ
2

|�
2

+ |µ
3
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3

)
(B.1a)

 2 =
1

µ
2

�
2

E
2

(B.1b)

 3 =
1

µ
3

�
3

E
3

(B.1c)

and let the function ⇠ : (-1, 1) ! R be

⇠(x) =
1

2
ln 4+

1

2
(x- 1) ln (1- x)-

1

2
(x+ 1) ln (1+ x). (B.1d)

Then let the local entropy density s : V⇤ ! R be defined as

s(⇢) =
nX

i=2

�
i

�
2

⇠ �
q
 

1

(⇢)2 + 
i

(⇢)2. (B.2)

aWe use the estimate B
d

=
µ
0

2⇡
(|µ

2

|�
2

+ |µ
3

|�
3

).

bFor nuclear and electron spin moments, µ
2

=  h�
n

/2 and µ
3

= - h�
e

/2, where �
n

> 0 and �
e

> 0 are the nuclear
and electron gyromagnetic ratios.
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Appendix C

Symbol reference

sym. description
⇤ Hodge star operator (Lee, 2012, pp 437-8)
↵ relative volatility (Equation 4.26)
B external spatially varying magnetic field
B dimensionless ratio (Table 3.2)
B
d

maximum dipole magnetic field (Definition 3.4)
cov covariance tensor (Definition 2.11)
�
i

spins per unit volume of species i (Definition 3.4)
� dimensionless ratio (Table 3.2)
d exterior derivative (Lee, 2012, pp 362-72)
d⇤ Hodge codifferential (Lee, 2012, pp 438-9)
dr↵ cotangent bundle basis
@
x

partial derivative with respect to x

@/@r↵ tangent bundle basis
Ei standard thermodynamic covector basis (Def. 2.4)
"
i

standard thermodynamic vector basis (Def. 2.7)
ei thermodynamic covector basis (Def. 3.7)
e
i

thermodynamic vector basis (Def. 3.7)
ˆF Onsager’s kinetic coefficients (Definition 2.8)
ˆFoz OZ-ansatz kinetic coefficients (Definition 2.14)
ˆ� transport rate tensor field (Definition 2.13)
�oz OZ transport coefficient (Definition 2.14)
g spatial metric (Definition 2.2)
ˆG entropy Hessian (Definition 2.12)
j spatial transport current (Definition 2.9)
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sym. description
µ
0

magnetic constant
µ
i

magnetic moment of an individual spin of species i

m dimension of U (Definition 2.1)
M basis transformation (Equation 4.22)
n number of conserved quantities (Definition 2.3)
N basis transformation (Equation 4.23)
� map composition
⌦ tensor product (Lee, 2012, p 306)
⌦ local thermodynamic potential (Definition 2.7)
O⇤ the set of smooth maps from U⇥ R to Rn

O the dual space of O⇤

p a point on U

P standard to polarization basis transform (Definition 3.7)
q globally conserved quantities (Definition 2.3)
⇢ local quantity densities (Definition 2.5)
(r↵) standard spatial coordinate (Remark 2.1)
R basis transform (Equation 4.20)
] sharp operator (Lee, 2012, pp 341-3)
s local entropy density (Definition 2.6)
TU tangent bundle on U

T
p

U tangent space at p 2 U

T⇤U cotangent bundle on U

T⇤
p

U cotangent space at p 2 U

U spatial manifold (Definition 2.1)
⇠
"
i

fraction of up-spin in tray i (Equation 4.25)
⇠
#
i

fraction of down-spin in tray i (Equation 4.25)
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