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a b s t r a c t

We present a framework for modeling the transport of any number of globally conserved quantities in
any spatial configuration and apply it to obtain a model of magnetization transport for spin-systems that
is valid in new regimes (including high-polarization). The framework allows an entropy function to
define a model that explicitly respects the laws of thermodynamics. Three facets of the model are
explored. First, it is expressed as nonlinear partial differential equations that are valid for the new regime
of high dipole-energy and polarization. Second, the nonlinear model is explored in the limit of low
dipole-energy (semi-linear), from which is derived a physical parameter characterizing separative
magnetization transport (SMT). It is shown that the necessary and sufficient condition for SMT to occur
is that the parameter is spatially inhomogeneous. Third, the high spin-temperature (linear) limit is
shown to be equivalent to the model of nuclear spin transport of Genack and Redfield (1975) [1].
Differences among the three forms of the model are illustrated by numerical solution with parameters
corresponding to a magnetic resonance force microscopy (MRFM) experiment (Degen et al., 2009 [2];
Kuehn et al., 2008 [3]; Sidles et al., 2003 [4]; Dougherty et al., 2000 [5]). A family of analytic, steady-state
solutions to the nonlinear equation is derived and shown to be the spin-temperature analog of the
Langevin paramagnetic equation and Curie's law. Finally, we analyze the separative quality of
magnetization transport, and a steady-state solution for the magnetization is shown to be compatible
with Fenske's separative mass transport equation (Fenske, 1932 [6]).

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Magnetization transport for a spin-system in a spatially varying
magnetic field has been studied theoretically [1] and experimen-
tally [7,8]. High-temperature models of spin magnetization trans-
port, such as that of Genack and Redfield, do not apply for systems
with high-polarization. With recent significant enhancements of
the technique of dynamic nuclear polarization (DNP) [9–11], which
has been shown to achieve significant hyperpolarization, models
that can describe the high-polarization regime in a spatially
varying magnetic field are needed.

We present a framework for modeling the transport of any
number of globally conserved quantities in any spatial configura-
tion. We then apply it to obtain a model of magnetization
transport for spin-systems that is valid in new regimes (including
high-polarization). Finally, we analyze the separative quality of the
magnetization transport. A particularly useful feature of the

framework is that specifying an entropy density function comple-
tely determines the system model. Such a function is presented for
a spin-system, and its validity is demonstrated by deriving classical
models from it, which is justification for using it in new regimes
(as we do in Section 3). In Section 2, we introduce the framework.
It is general in the sense that it can be applied to systems with any
number of globally conserved distributed quantities that evolve
over any (smooth) spatial geometry in any number of spatial
dimensions. The laws of thermodynamics are included a priori
such that any specific model based on the framework will be
guaranteed to respect all four laws.

In Section 3, we apply the framework by specifying conserved
quantities, an entropy function, and a spatial geometry for a spin-
system and thereby obtain a new model of magnetization trans-
port in a magnetic field gradient. It accommodates previously
unmodeled regimes of high energy and high polarization, such as
may develop with DNP. The remainder of the section explores the
model in various limits and connects them to previous models.

In Section 4, we analyze the separative quality of magnetiza-
tion transport, highlighting the parallelism between it and the
separative mass transport work that began with Fenske [6].
Magnetization transport in a magnetic field gradient is both
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diffusive and separative, and the latter is of particular interest for
technologies that may be enhanced by hyperpolarization, such as
magnetic resonance imaging (MRI), nuclear magnetic resonance
(NMR) spectroscopy, and magnetic resonance force microscopy
(MRFM). DNP has been used to achieve significant hyperpolar-
ization through transferring polarization from electron-spins
to nuclear-spins. But DNP is still a slow process, taking tens to
thousands of seconds to develop, and it is impeded by magnetic
field gradients, which for certain applications (such as MRFM) is
undesirable. We consider the feasibility of a different technique
in which no polarization is transferred among spin-species,
but in which magnetization is concentrated by the phenomenon
of separative magnetization transport (SMT). We develop the
necessary and sufficient conditions for the SMT of a single spin-
species—most notably, that the magnetic field must be spatially
varying. Taken as a whole, this paper lays the groundwork for an
investigation into how the SMT effect might be enhanced to
produce hyperpolarization.

2. Framework for transport analysis

We will proceed in the coordinate-free language of differential
geometry, which allows the laws of thermodynamics to be
respected explicitly, regardless of spatial geometry or the number
of conserved quantities.

What follows is a necessarily extensive list of definitions and
remarks. As we will see, the mathematical rigor of these defini-
tions will enable and greatly simplify the subsequent theoretical
development.

The following definitions are the elements from which two
propositions are constructed that describe a framework for trans-
port analysis and its adherence to the laws of thermodynamics. In
any specific application of the framework, defining the spatial
geometry, conserved quantities, entropy function, and a space-
time scale will be sufficient to construct a model of transport that
respects the laws of thermodynamics from the following defini-
tions (as detailed in Remark 2).

The elements of the framework are defined in the following
order:

(a) the spatial manifold, metric, and coordinates;
(b) conserved quantities and their local densities;
(c) the entropy density and thermodynamic potentials;
(d) Onsager's kinetic coefficients;
(e) the current of local quantity densities;
(f) the continuity equation for local densities; and
(g) a transport rate tensor and an ansatz further specifying the

kinetic coefficients.

Proposition 1 will describe how the laws of thermodynamics are
satisfied in the definitions and Proposition 2 will assert that the
definitions describe a physically valid model of transport. We
begin with spatial considerations.

Definition 1 (spatial manifold). Let U be a Riemannian (smooth)
manifold, which represents the spatial geometry of a macroscopic
thermodynamic system. We call U the spatial manifold. □

For many applications, a Euclidean space1 Rm is an appropriate
choice for U .
Remark 1 (spatial coordinates). Let φ : U-Rm be some local
coordinate map.2 Typically, we will denote component functions

of φ, defined by φðpÞ ¼ ðr1ðpÞ;…; rmðpÞÞ for some point pAU , as
ðr1;…; rmÞ. These are called local spatial coordinates, and typically
denoted ðrαÞ (see Fig. 1.) □

By definition, the Riemannian spatial manifold U is endowed
with a Riemannian metric, which determines the geometry of U .
Definition 2 (spatial metric). Let g be a Riemannian metric3 on U .
We call g the spatial metric. □

In local spatial coordinates, the metric is written as

g¼ gαβ drα � drβ : ð1Þ

Definition 3 (conserved quantities). Let qARn be the n-tuple
q¼ ðq1;…; qnÞ, where qiAR represents a conserved quantity. □

Definition 4 (standard thermodynamic dual basis). Let the ordered
basis ðε1;…; εnÞ for Rn be

ε1 ¼ ð1;0;…;0Þ; … εn ¼ ð0;0;…;1Þ:
We call this the standard thermodynamic dual basis,4 and it is often
denoted ðεiÞ. □

In the standard basis, with the Einstein summation convention,

q¼ ½qε�iεi: ð2Þ

Definition 5 (local quantity density). Let On be the set of smooth
maps from U � R (where R represents time) to Vn �Rn (i.e. for
each point in space and time we assign a vector in Rn). Given
a vector of conserved quantities q, let ρAOn represent the local
spatial density of each of the conserved quantities q, such that

q¼
Z
U
ρ dv; ð3Þ

where dv is a volume element of U . □

In the standard thermodynamic dual basis ðεiÞ, we write

ρ¼ ½ρε�iεi; ð4Þ
where each ½ρε�i is a function ½ρε�i : U � R-R. The mathematical
structure of ρ assigned in the definition is equivalent to a section
of the product bundle U � R� Vn-U � R. Fig. 2 illustrates this
description, where copies of Vn ¼Rn correspond to each location
in U .

We now turn to entropic considerations.

Definition 6 (local entropy density). Let the local entropy volu-
metric density function s : Vn-R be a function that is nonnegative
and concave. □

The restriction of the local entropy density s to nonnegative
functions satisfies the third law of thermodynamics. Moreover, we
require that s be concave to allow the Legendre dual relationship
that will now be introduced.

At times it is convenient to work with another set of variables
called local thermodynamic potentials. These are significant
because their spatial gradients drive the flow of ρ.

Definition 7 (local thermodynamic potentials). Let Ω : U � R-V
be defined by the relation

Ω¼ ds○ρ; ð5Þ
where the exterior derivative d is taken with respect to the vector

1 See [12, p. 22] and [13, p. 598].
2 See [13, pp. 15–16, 60–65].

3 See [14, p. 23].
4 Although it is an uncommon practice to introduce a dual basis before a basis,

we do so here because the quantities represented by the quantities q and ρ are
more naturally—from a physical standpoint—considered dual to the potentials Ω.
Yet, the quantities naturally arise first in the series of definitions.
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space Vn(Fig. 3).5 We call Ω the local thermodynamic potential, and
it is the Legendre transform6 n-tuple conjugate of ρ. The dual
space of On is denoted O, and so ΩAO. The duality gives the
standard thermodynamic basis ðEiÞ to be such that EiðεjÞ ¼ δji, where
δ is the Kronecker-delta. □

The standard thermodynamic basis representation of the
potential is

Ω¼ ½ΩE�iEi: ð6Þ

The convention has been adopted that thermodynamic vectors are
represented by uppercase symbols with upper indices on vector
components (e.g. ½ΩE�i) and thermodynamic covectors are repre-
sented by lowercase symbols with lower indices on covector
components (e.g. ½ρε�i).

Commonly, inverse temperatures are the thermodynamic
potentials of internal energy quantities. In this manner, other
thermodynamic potentials can be considered to be analogs of
inverse temperature. For instance, magnetic moment quantities
have spin-temperature thermodynamic potentials. Keeping this in
mind can aid the intuition that spatial gradients in Ω drive the
flow of ρ, as in the familiar case of heat transfer being driven by
gradients in (inverse) temperature.

We now begin to construct the current of conserved quantity
densities j. First, a discussion of spatially and thermodynamically
indexed tensor structures is needed, and this requires calculus on
manifolds.7

In order to do calculus on manifolds, the notion of a tangent
space is required8: a tangent space at a point p on the spatial
manifold is a vector space TU on which tangent vectors of curves
through p live (see Fig. 4). A chart that includes p provides a
convenient basis for TU via its coordinate vectors9 at point p,
∂=∂rαjp, where ðrαÞ is the local coordinate representation of pAU .
The tangent bundle TU is the disjoint union of the tangent spaces at
all points on the manifold.10

The dual space of the tangent space at p, or cotangent space Tn

pU ,
can be given a convenient basis drαjp by dual-mapping the tangent
space basis ∂=∂rαjp to the cotangent space. The cotangent bundle
TnU is the disjoint union of the cotangent spaces at all points on
the manifold.11

Spatially indexed structures will be expressed in terms of the
coordinate vectors ∂=∂rαjp and coordinate covectors drαjp. Tensors
that are indexed by both spatial coordinates and thermodynamic
bases we call thermometric structures.

The following convention for describing thermometric struc-
tures will be used. As with any tensor or tensor field, the order of
their indices is merely conventional, but must be accounted. No
convention is established for the ordering of the indices, but we
will describe a tensor as being indexed covariantly (acting on
covectors) or contravariantly (acting on vectors), first with a
thermodynamic pair, say ð0; \� t2Þ, and second with a spatial pair,
say ð1;1Þ. For instance, a tensor at some point pAU might be
ð0; \� t2Þ � ð1; \� t1Þ, which would have as its standard basis
some permutation of the tensor product drα � drβ � Ei � εj.

The convention that has been adopted is that spatial coordinate
vectors ∂=∂rα and covectors drβ are indexed by the lowercase
Greek alphabet and thermodynamic basis vectors Ei and covectors
εj are indexed by the lowercase Latin alphabet.

Definition 8 (Onsager kinetic coefficients). Let F̂ be defined as a
positive-definite type ð0; \� t2Þ � ð0; \� t2Þ thermometric contra-
variant tensor field,12 which is called the Onsager kinetic coeffi-
cients tensor field, which serves as a thermodynamic and spatial
metric. □

To satisfy the second law of thermodynamics, F̂ must be
positive semi-definite, so Definition 8 satisfies the second law.

Typically, a contravariant tensor field is considered to assign a
tensor map at each point pAU from the tangent space TU to a real
number. However, considering Ω as a section of a fiber-bundle, it
is a structure analogous to the tangent bundle TU , and so F̂ is
indexed with both the usual cotangent local coordinate vectors drα

and the thermodynamic dual basis ðεiÞ. We often use the sym-
metric basis for F̂ , ðεi � drαÞ � ðεj � drβÞ.

Definition 9 (current). Let j be defined as

j¼ F̂ ○ðdΩÞ♯ ð7Þ

where ♯ is the musical isomorphism,13 d is the exterior derivative,14

and the symbol ○ denotes a functional composition. We call j the
spatial transport current. □

Fig. 1. Local spatial coordinates ðrαÞ and coordinate map φ to Rm (shown here with
m¼2). A curve γðtÞ is a map from an interval on R to the spatial manifold U and has
coordinate representation φðγðtÞÞ.

Fig. 2. ρ considered as a time-varying section of a product bundle with (black) base
U and (red) section ρ. The (gray) vector space Vn ¼Rn is duplicated at each point on
U . Each copy of Rn corresponds to a (blue) arrow that represents ρ at that point in
space and at some given time. In this example, U is one-dimensional (with
curvature) and the vector space is R2, meaning there is a single spatial dimension
and there are two conserved quantities. (For interpretation of the references to
color in this figure caption, the reader is referred to the web version of this paper.)

5 The vector space Vn has dual space Vnn ¼ V . Therefore ΩAO maps to vectors
in V and ρAOn maps to covectors in Vn.

6 For an excellent article on the Legendre transform and this duality, see [15].
7 See both [13,16].

8 See [13, p. 54].
9 See [13, p. 60].
10 See [13, pp. 65–68].
11 See [13, pp. 272–303].
12 Note that a tensor field is a tensor bundle section.
13 The musical isomorphisms are defined by the metric g as maps between the

tangent bundle TU and the cotangent bundle TnU (see [13, pp. 341–43] and [14,
pp. 27–29].). The ♯ operator maps spatial 1-forms to vectors.

14 The exterior derivative is the coordinate-free generalization of the familiar
differential of a function. See [13, pp. 362–72].
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Eq. (7) asserts that the current is driven by the (generalized)
gradient in thermodynamic potentialΩ, which is a multi-potential
statement of the zeroth law of thermodynamics.

When U ¼Rm, as is often the case, (7) can be written in terms
of the coordinate-free grad operator15 as

j¼ F̂ ○gradΩ: ð8Þ

With the preceding definitions, we can introduce the governing
equation for ρ, which is the fundamental equation of the frame-
work of transport.

Definition 10 (continuity). Let the continuity equation be defined
as

∂tρ¼ dnj ð9Þ

where dn is the Hodge codifferential operator.16 □

Eq. (9) is an expression of the global conservation of local
quantities ρ. It states that the local quantities ρ change with the
(generalized) divergence of a current. For an energy quantity, this
is the first law of thermodynamics.

Proposition 1 (laws of thermodynamics). Each of the following
statements is a necessary and sufficient condition for the adherence
of the framework for transport analysis to the corresponding law of
thermodynamics. In aggregate, then, they are necessary and sufficient
conditions for adherence to all four laws of thermodynamics.

(zeroth) The current j satisfies the equation j¼ F̂ ○ðdΩÞ♯, as in
Definition 9.

(first) The continuity equation is equivalent to the equation
∂tρ¼ dnj, as in Definition 10.

(second) Onsager's kinetic coefficient tensor F̂ is positive semi-
definite, as in Definition 8.

(third) The local entropy density function s is non-negative, as in
Definition 6. □

Notice that while the laws of thermodynamics have narrowed,
considerably, the possible forms of the transport equation, two
elements remain indefinite, although their general structures have
been prescribed: the local entropy density function s and the
tensor of Onsager's kinetic coefficients F̂ .

The specific form of the entropy function depends on the
system, and so it is as yet necessarily unspecified. The final step,
then, is to specify the form of the Onsager kinetic coefficients
tensor field F̂ . Two forms are presented, the first (Definition 13) is
quite general, and applies to systems that have different transport
rates. The second (Definition 14) is an ansatz that can be used in
certain applications that have a single transport rate, and is
applied in Section 3 to model the magnetization transport of a
system of one spin-species.

But, first, two more definitions are required.

Definition 11 (covariance tensor field). Let cov be defined as the
negative-definite tensor field17

cov¼ ∂2s
∂ρi∂ρj

Ei � Ej

 !�1

: ð10Þ

The tensor field cov represents quantum mechanical observation
processes which are related to the entropy density s by the
expression.18 We call cov the covariance tensor field. □

This is a connection between the quantum mechanical and the
macroscopic descriptions of transport. It can also be expressed in
terms of a free-energy and local thermodynamic potentials, which
are related to the entropy and local quantity densities by the
Legendre transform.

Definition 12 (entropy Hessian). Let Ĝ be defined as the type
ð0;2Þ � ð0;2Þ thermometric contravariant tensor field

Ĝ ¼ �g � cov: ð11Þ
We will call Ĝ the entropy Hessian. □

In local coordinates and the standard thermodynamic basis

Ĝ ¼ �ðgαβ drα � drβÞ � ∂2s
∂ρi∂ρj

Ei � Ej

 !�1

: ð12Þ

A symmetric standard basis for Ĝ is ðεi � drαÞ � ðεj � drβÞ. Ĝ is
positive-definite because g is positive-definite by its definition as a
Riemannian metric and cov is by definition negative-definite.

Definition 13 (transport rate tensor field). Let Γ̂ be a ð1;1Þ � ð1;1Þ
thermometric mixed tensor field called the transport rate tensor,
which is defined by the relation

F̂ ¼ Γ̂ðĜÞ: □ ð13Þ

The transport rate tensor field Γ̂ sets the space–time scales for
transport. In general, there are n2 �m2 transport space–times
scales, but we often assume many fewer by symmetry and spatial
isotropy.

Proposition 2 (framework for transport analysis). Given a system of
thermodynamic quantities, its covariance tensor field,19 and its
transport rate tensor—and if the system has no significant advective
transport20—the continuity equation of Definition 10 and its depen-
dent definitions describe the transport of the system over times for
which global quantities q can be considered substantially
conserved.21 □

Fig. 3. A commutative diagram relating the space–time manifold U � R, to
thermodynamic quantity densities ρAOn , thermodynamic potentials ΩAO, and
the entropy density function sAC1ðVn ;RÞ.

Fig. 4. The tangent space TU at point pAU with the standard basis ∂=∂rαjp .

15 See [13, p. 368].
16 The Hodge codifferential maps k-forms to ðk�1Þ�forms [13, pp. 438-439].

In (9) it maps a spatial 1-form to a 0-form. This is similar to the divergence
operator, except that it acts on a 1-form instead of a vector.

17 See Eqs. (2)–(11) of [17].
18 This is related to the Ruppeiner metric [18,19].
19 The covariance tensor field can be found by observation, by quantum

simulation, or by an entropy density function satisfying Eq. (10). The Legendre
duality makes it equivalent to have a known, valid free energy-density function.

20 We have not here considered the case of advective transport. For magne-
tization transport, this means that only solid-state magnetization samples are
considered.

21 That is, times for which Definition 3 holds for q.
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For certain systems (e.g. a system of spins of a single species),
the following ansatz simplifies the analysis.

Definition 14 (OZ-ansatz). Let Γoz be a real number called the
Onsager–Ziegler transport coefficient that specifies a single space–
time scale. Let the Onsager–Ziegler ansatz (OZ-ansatz) be the
following relation that specifies the Onsager kinetic coefficient
tensor field (Definition 8):

F̂ oz ¼ΓozĜ: □ ð14Þ

Eq. (14) assumes a single space–time scale for all transport. This
ansatz is roughly accurate in many physical systems, but we do not
assert that it is generally valid. In nuclear magnetization transport,
this ansatz is usually reasonable.22

Remark 2. Therefore, to implement the transport model for any
specific system, the only elements needed are as follows:

(a) the spatial manifold U , metric g, and local coordinates ðrαÞ;
(b) the globally conserved thermodynamic quantities that define

local quantity densities ρ;
(c) the local entropy density function s; and
(d) the transport rate tensor Γ̂. □

In Section 3 the framework of Proposition 2 is developed into a
model for the specific case of magnetization transport through a
process of specifying the elements described in Remark 2.

3. Model of magnetization transport

In this section, we construct a specific model of magnetization
transport from the framework of the last section in one spatial
dimension, with a single spin-species, and (therefore) with two
conserved quantities. Table 1 summarizes the steps for developing
this magnetization transport model. We begin with some
definitions.

Definition 15 (spatial manifold). Let the manifold U be defined by
U ¼R. We call U the spatial manifold.23 □

An atlas for U is given by the chart φ : U-R, where φ is the
identity, which yields the single Cartesian spatial coordinate ðrÞ in
the direction normal to the isotropic plane.

Definition 16 (spatial metric). Let g be the (Riemannian) Euclidean
metric, g ¼ dr � dr. □

For the transport of a single spin-species, there are two globally
conserved functions on U , so n¼2.

Definition 17 (conserved quantities). Let qARn be a vector with
components: ½qε�1AR representing the total magnetic energy
(Zeeman and dipole) and ½qε�2AR representing the total magnetic
moment.24 □

Remark 3 (quantity densities). These definitions, along with the
framework of Proposition 2, posit a temporally varying local
quantity density ρAOn, the components of which, in the standard
basis, represent the energy volumetric density (½ρε�1) and the
magnetization (½ρε�2). □

3.1. Local entropy density

The local entropy density s : Vn-R is defined in a coordinate-
free manner that requires some discussion. The definition is
derived from the entropy of mixing, which is an entropy function
that describes the mixing of several nonreactive quantities.

Definition 18 (local entropy density). Let Δ be the temporally
invariant volumetric spin density (spins per unit volume),25 B be
the external spatially varying magnetic field, Bd be the average
dipole magnetic field, and μ be the magnetic moment of an
individual spin. Additionally, let the vector-valued functionals
Φ;ΨAO be

Φ¼ 1
BdμΔ

ðE1þBðrÞE2Þ ð15aÞ

and

Ψ¼ 1
μΔ

E2 ð15bÞ

and the real number p be

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΦðρÞ2þΨðρÞ2

q
: ð15cÞ

Then let the local entropy density s be defined as

sðpÞ ¼ 1
2 ln 4þ1

2 ðp�1Þlnð1�pÞ
�1

2 ðpþ1Þlnð1þpÞ: □ ð16Þ

It can be shown that (16) satisfies the constraints of Definition 6.
Although this definition makes reference to the standard basis ðEiÞ,
Φ and Ψ can be written in any basis.

Due to the logarithmic definition of entropy density, the
minimum of entropy is inconsequential, except in that it is
necessarily nonnegative. With another definition of globally con-
served functions, say 2q, the minimum entropy would change, but
the resulting transport is invariant.

3.2. Model of magnetization transport

We now present the model of magnetization transport. To
remain as general as possible, the OZ transport coefficient Γoz will
not be assigned. This remaining parameter will require selection
based on the spin system. Diffusion coefficients are often suitable
choices, and for nuclear- and electron-spin systems, the literature
contains theoretical and empirical values [8,7,1,5].

Proposition 3 (model of magnetization transport). Let a magneti-
zation system be such that the entropy of Definition 18 is valid and let
the system have a single spin-species such that Definition 17 holds.
Additionally, let the system be non-advective and let the OZ-ansatz
hold for the system. And let the system meet the other criteria of the
framework for transport analysis of Proposition 2, using Definitions
15–18 where appropriate. Then the continuity equation of Definition
10 and its dependent definitions describe the transport of the system
of magnetization. □

3.3. Magnetization transport equation

Proposition 3 defines the magnetization transport equation to
be the continuity equation (9) with the specific choices of spatial
manifold U , local quantity densities ρ, and entropy density func-
tion s as given in Definitions 15–18. This is the nonlinear

22 See [1, p. 83].
23 We consider geometries with transverse isotropy of magnetization, external

magnetic field, and sample composition; therefore, only one spatial dimension is of
consequence. For this reason, although volumes are considered three-dimensional,
in all other cases we consider only the single spatial dimension.

24 Note that any linear transformation of these quantities is also conserved.

25 Since only a single spatial dimension is considered for U, volumes will have
physical dimensions ðlengthÞ,1 or meters in SI units.
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magnetization transport equation. A family of steady-state solutions
for this model will be presented in Section 3.3.4.

Two additional forms of this equation will be presented in
important limits. These are solved numerically and compared to
the nonlinear model. Along the way, various connections to prior
art will be discussed.

3.3.1. Basis considerations
The definitions of the preceding section allow any thermody-

namic basis for the local quantity density ρ. In a spatially varying
magnetic field, it is convenient and common practice to use a
thermodynamic basis that is itself spatially varying. This is
computationally advantageous and allows the continuity equation
to be written in a simple component form. Two classes of basis are
now defined.

Definition 19 (homogeneous basis). Let a homogeneous basis be a
thermodynamic ordered vector- or covector-basis that is not
spatially varying. □

The standard thermodynamic bases are spatially invariant, and
so they are homogeneous.

Definition 20 (inhomogeneous basis). Let an inhomogeneous basis
be a thermodynamic ordered vector- or covector-basis that is
spatially varying. □

Definition 21 (polarization thermodynamic covector basis). Let
ðe1;…; enÞ be defined as an ordered thermodynamic covector basis
by the basis transform from the standard dual basis

½ρe�i ¼ ½P�ji½ρε�j; ð17Þ
where P is the thermodynamic (1,1) mixed tensor with matrix
representation

P ¼ 1
μΔðrÞ

1=Bd BðrÞ=Bd

0 1

� �
: □ ð18Þ

Because ρ is a coordinate-free object, the basis vectors of ðεiÞ
must transform to those of ðeiÞ in a compensatory manner.
Similarly, the polarization thermodynamic vector basis for Ω,
ðeiÞ, is easily derived. All such relations are shown in Fig. 5.

From the relations of Fig. 5, it can be shown that the basis
covectors and vectors of the e-basis must be spatially varying, and
so it is an inhomogeneous basis.

The physical interpretations of the components of ½ρe�iei are no
longer the same as those of ½ρε�iεi. Both components are normal-
ized such that they are nondimensional (their basis vectors have
assimilated the units originally associated with the components).
The second component has become what is typically called
“polarization,” and ranges over the interval ½�1; þ1�. The first

Table 1
Left-to-right: an element (left) defined in the general framework (center) is applied to specify an element of the 1D one-species magnetization model (right). Top-to-bottom: a
summary of the derivation of the magnetization transport model.

Deriving a model of magnetization transport in a magnetic field: a summary

Element General framework of transport (Section 2) 1D single-species magnetization theory (Section 3)

Spatial manifold U Let U be a Riemannian manifold (Definition 1) with metric g
(Definition 2) and local coordinates ðrαÞ (Remark 1) that represents
the spatial geometry

Let U be the reals (Definition 15, one spatial dimension), the spatial
coordinate be ðrÞ, and the metric be g¼ dr � dr (Definition 16,
Euclidean metric)

Conserved quantities q Let the vector qARn represent conserved quantities (Definition 3).
Let the basis ðεiÞ be the standard thermodynamic dual basis for q
(Definition 4)

Let ½qε�1 represent the total magnetic energy and ½qε�2 represent the
magnetic moment (Definition 17)

Quantity densities ρ Let the vector-valued function ρ represent local quantity density
functions that can be integrated over U to obtain q (Definition 5). The
function ρ inherits the basis ðεiÞ

Let ½ρε�1 represent the local energy density and ½ρε�2 represent the
magnetization (Remark 3)

Entropy density s Let s be the nonnegative and concave local entropy density function
of quantity densities, all of which can be expressed as basis
transformations of ρ

Let s be the entropy of mixing, as described in Definition 18. It is
expressed without explicit spatial dependence, which is convenient
for the proceeding calculations

ρ-Dual potential Ω The vector of local thermodynamic potentials Ω is the Legendre dual
variable of ρ (Definition 7). The standard thermodynamic basis for Ω
is ðEiÞ, where EiðεjÞ ¼ δji

Let Ω be the spin-temperatures ½ΩE �i ¼ ∂s=∂½ρε�i . Henceforth, use the
convenient thermodynamic basis ðeiÞ and dual basis ðeiÞ with the
transformation of Definition 21

Kinetic coef. F̂ oz Let the covariance tensor field be (Definition 11)

cov¼ ð∂2s=∂ρi∂ρj Ei � EjÞ�1, let the entropy Hessian be (Definition 12)

Ĝ ¼ �g � cov, and let the transport coefficient Γoz. Finally, define
Onsager's kinetic coefficients using the OZ-ansatz (Definition 14)

F̂ oz ¼ ΓozĜ

Compute cov, Ĝ , and F̂ oz. The latter two are thermometric
structures with four components. Determine the transport
coefficient Γoz from spin-system properties such as spin-species
and spin-density. A spin-diffusion constant from the literature may
be appropriate

Transport current j Let the transport current j be F̂ oz acting on what is the gradient,

in Euclidean space, of Ω (Definition 9): j¼ F̂ oz○ðdΩÞ♯
Compute the current from (Definition 9) using the equation:

ðdΩÞ♯ ¼ ð∂r ½Ωe�1Þe1 � ∂=∂rþð∂r ½Ωe�2þ½Ωe�1B0=BdÞe2 � ∂=∂r

Governing equation of ρ Let the continuity equation, the governing equation of ρ, be
(Definition 10): ∂tρ¼ dnj

Write the continuity equation with the divergence of j:
dnj¼ ð�∂r ½je�1þ½je�2B0=BdÞe1þð�∂r ½je�2Þe2

Fig. 5. Basis transformation relations between the standard dual basis ðεiÞ and basis
ðEiÞ and the e-dual basis and e-basis for ρ¼ ½ρε�iεi ¼ ½ρe�iei (left) and Ω¼ ½ΩE �iEi ¼
½Ωe�iei (right). The ð1; \� t1Þ thermodynamic tensor P of Definition 21 determines
the transformation.
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component is a nondimensional version of the dipole-energy
density (since the Zeeman energy density has been subtracted
from the total energy density).

3.3.2. Thermodynamic potentials and spin-temperature
Definitions 7 and 18 give the e-basis representation of the

thermodynamic potential

ΩðρÞ ¼ ð�½ρe�1arctanhðjρjÞ=jρjÞ e1
þð�½ρe�2arctanhðjρjÞ=jρjÞ e2

ð19Þ

where j � j is the Euclidean norm. Fig. 6 shows density plots for
the components of ΩðρÞ. These approach 71 as jρj appro-
aches unity.

Spin temperature is closely associated with Ω, which can be
considered to be the inverse spin-temperature associated with
each quantity ρ. In the standard basis, the components of Ω
represent the inverse spin-temperatures of total energy-density
(½ΩE�1) and total magnetization (½ΩE�2). In the e-basis, they
represent the inverse spin-temperatures of the normalized dipole
energy-density (½Ωe�1) and polarization (½Ωe�2).

This interpretation is consistent with the relationship illu-
strated in Fig. 6 in which as jρj-1, ½Ωe�i-71. This means that
high spin-temperatures correspond to low energy densities and
polarization and low spin-temperatures correspond to high energy
and polarization.

Eq. (19) can be solved over the domain tanhjΩjr1 for

ρðΩÞ ¼ ð7 ½Ωe�1tanhðjΩjÞ=jΩjÞ e1

þð7 ½Ωe�2tanhðjΩjÞ=jΩjÞ e2
ð20Þ

where the terms are positive for ½Ωe�1o0, positive or negative for
½Ωe�1 ¼ 0, and negative otherwise. The density plots of Fig. 6 show
the functional relationships of the components.

It is simple to show that the following two identities hold for
the relationship between ρ and Ω for all time and space:

½ρe�2
½ρe�1

¼ ½Ωe�2
½Ωe�1

and ð21aÞ

jρj ¼ tanhjΩj: ð21bÞ

3.3.3. Magnetization transport equation: method
Although there is no compact expansion of the magnetization

transport equation in coordinates, the key operations required to
derive it in perhaps the most compact basis, the e-basis, are here
presented.

Let Δ be spatially homogeneous. The first operation is the
gradient of the potential ðdΩÞ♯ that is an element of the expression
for j (7). In a single spatial dimension with coordinate (r) and

thermodynamic e-basis, this amounts to

ðdΩÞ♯ ¼ ð∂r½Ωe�1Þ e1 � ∂=∂r
þð∂r ½Ωe�2þ½Ωe�1B0=BdÞ e2 � ∂=∂r

ð22Þ

where the field-gradient term arises from the inhomogeneity of
the e-basis. Second and similarly, it can be shown that the
codifferential of the current is

dnj ¼ ð�∂r ½je�1þ½je�2B0=BdÞ e1

þð�∂r½je�2Þ e2:
ð23Þ

3.3.4. Steady-state solutions
A family of steady-state solutions is developed. Later in the

section, certain limits are explored in which familiar theories are
shown to be subsets of this family of solutions.

Steady-state means that dnj is temporally invariant. A simple
solution can be developed in the case that j¼ 0. Then from (7), it
can be shown that ðdΩÞ♯ must be zero because F̂ oz is positive
definite. In the standard basis this implies that the components
∂r ½ΩE�i ¼ 0, i.e. the system evolves toward uniform distributions of
inverse spin-temperatures. In the polarization basis it implies that
the components of (22) are zero. Let ½Ω0

e �i denote constants
determined by a boundary condition r0, and let BðrÞ ¼ ðBðrÞ
�Bðr0ÞÞ=Bd and ΔðrÞ ¼ΔðrÞ=Δðr0Þ. The resulting simple system of
ordinary differential equations can be solved for

Ωð0; rÞ ¼ ð½Ω0
e �1ΔðrÞÞ e1

þð½Ω0
e �2�BðrÞ½Ω0

e �1ÞΔðrÞ e2:
ð24Þ

If we let Δ be spatially invariant, Δ is unity and ½Ωe�1 ¼ ½Ω0
e �1 is

also spatially invariant. The implications of this are interesting,
particularly when an attempt is made to map this Ω�solution to a
ρ-solution. It can be shown from (20) and (24) that the spatial-
dependence of the components of ρ will be contained in ½Ωe�2
ð0; rÞ. In fact, a search for a dimensionless parameter to represent
the spatial- and magnetic field-dependence quickly yields that
½Ωe�2ð0; rÞ itself is an excellent choice. This means that a family of

Fig. 6. (a) Density plots of ½Ωe�1ðρÞ (left) and ½Ωe�2ðρÞ (right). As jρj-1, ½Ωe�i-71. (b) Density plots of ½ρe�1ðΩÞ (left) and ½ρe�2ðΩÞ (right).

Fig. 7. A family of steady-state solutions for ρ. The (white) constant-½Ωe�1 slices of
the surface can be interpreted as reparameterized spatial solutions in which ½Ωe�2
represents the spatial- and magnetic field-dependence.
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spatial steady-state solutions are to be found as constant-½Ωe�1
slices of the surfaces of ρðΩÞ, as shown in Fig. 7, and that ½Ωe�2 can
be considered to be the dimensionless spatial variable.

For small ½Ωe�1, (20) yields the expression

½ρe�2ðt; rÞ ¼ �tanh½Ωe�2ðt; rÞ: ð25Þ
This corresponds to the ½Ωe�1 ¼ 0 slice of Fig. 7. In the standard
basis (with functional dependencies suppressed), (25) becomes

½ρε�2 ¼ μΔ tanhðμΔðB½ΩE�1�½ΩE�2ÞÞ: ð26Þ
This is a spin-temperature analog of the Langevin paramagnetic
equation of statistical mechanics, which expresses the steady-state
magnetization distribution as a function of external magnetic field
and temperature. If (26) is linearized about small ½ΩE�1 (high spin-
temperature of total energy), a spin-temperature analog of Currie's
law results.

As will be discussed in Section 4, (25) and (26) are also closely
related to the separation literature.

3.3.5. Low dipole-energy magnetization transport equation
In many applications it will be reasonable to assume small

dipole-energy. A semi-linear magnetization transport equation can
be derived from the continuity equation of Proposition 3 by
linearizing about ½ρe�1 ¼ 0. This model will provide insight into
the conditions for separative magnetization transport (SMT). The
continuity equation and current can be linearized in e-basis
components, with Δ being constant, as

∂tρ¼ dnj ð27aÞ

j ¼ ð�Γoz∂r ½ρe�1Þ e1 � dr

þð�Γoz∂r½ρe�2þΓoz Δ ηÞ e2 � dr
ð27bÞ

where

η¼ βð1�ð½ρe�2Þ2Þ ð27cÞ
is a dimensionless factor and

β¼ ∂rB
ΔBd

½Ωe�1 ð27dÞ

is the dimensionless single-spin-species SMT parameter, written in
the e-basis. It is more physically intuitive in E-basis components

β¼ μ∂rB½ΩE�1: ð27eÞ
In Section 4, we will see that this parameter is functionally related
to the relative volatility parameter α of the mass separation
literature. After evaluating the codifferential, (27) becomes

∂tρ ¼ ðΓoz∂2r ρ1þ j2∂rB=BdÞ e1

þðΓoz∂2r ρ2�Γoz Δ ∂rηÞ e2:
ð28Þ

From (27) and (28) the necessary and sufficient conditions for
SMT are derived in Section 4.

3.3.6. High spin-temperature magnetization transport equation
In the literature, high spin-temperature is often assumed

[1,7,20]. In many applications, especially when there is little
separation, this is sufficient. High spin-temperature approxima-
tions are low-Ω and low-ρ approximations, and can be derived
from the model of magnetization transport (Proposition 3) by
a first-order power-series expansion of the continuity equation
about ρ¼ 0.

Proceeding with this approach in the e-basis, the following
component expression is derived:

∂tρ¼ dnj ð29aÞ

j ¼ Γoz �∂r½ρe�1þ½ρe�1
Δ0

Δ

� �
e1 � dr

þΓoz �∂r ½ρe�2þ½ρe�2
Δ0

Δ
�½ρe�1 B0

Bd

� �
e2 � dr:

ð29bÞ

Eq. (23) can be used to compute a component form of the
differential equation (29a). If ΔðrÞ is assumed to be spatially
homogeneous, under a change of basis, the transport equations
of Genack and Redfield are recovered.26 The equivalence will be
discussed in Section 3.4.

Genack and Redfield state that their expression must be altered
to account for a nonuniform density of spins per unit volume Δ.
Eq. (29) is such an alteration.

3.3.7. Comparison of the models
In certain regimes, the nonlinear equation of Proposition 3

differs from both the semi-linear (27a) and linear (29) versions.
For large jρj, only the nonlinear equation is valid. For large ½ρe�2 but
small ½ρe�1, only the nonlinear and partially linear equations are
valid. All three are valid for small jρj.

Fig. 8 numerically compares the three models. The parameters
chosen are typical for a magnetic resonance force microscopy
(MRFM) experiment [2–5]. The operating regime was large jρj
and field gradient, along with initial conditions of constant ½ρe�1
and step-like ½ρe�2. This models an MRFM experiment in which a
method such as dynamic nuclear polarization (DNP) has hyper-
polarized a sample and a region of polarization has been
inverted, yielding a sharp transition in the polarization from
negative to positive. The nonlinear model predicts that, after
some time, the spatial distribution of ρ shown in the upper figure
would occur. The semi-linear and linear approximations are
inaccurate in this operating regime, with the semi-linear per-
forming better than the linear approximation, as the plot of
deviations from the nonlinear model shows. The linear approx-
imation deviates by nearly 30% at the transition, where the semi-
linear approximation deviates by approximately 20%.

The deviations are most significant near sharp transitions in
polarization. In many magnetic resonance applications this is an
important regime that occurs when the polarization of a region of
the sample is inverted or saturated.

3.4. Equivalence to other models at high spin-temperatures

In Section 3.3.6, we claimed that if ΔðrÞ is assumed to be
spatially homogeneous, the linear transport equation developed
there is equivalent to the transport equations of Genack and
Redfield.27 Here we show the basis transformation that yields this
equivalency. Additionally, another commonly encountered form of
the linear model—one expressed in inverse spin-temperature
variables—is shown to be equivalent.

Two methods have been used to verify the equivalency of the
equations. The first is to relate their basis to the e-basis, derive
the nonlinear equation in terms of their components via
Proposition 3, and linearize it for small ρ-quantities. The
component transformation from the (inhomogeneous) Genack
and Redfield basis to the (inhomogeneous) e-basis is given by
the (1,1)-tensor transformation R : On-On, which has the

26 See [1, p. 83].
27 Eqs. (24a,b) of [1] are the equivalent expression. We believe that (24b) has a

typo in the term containing the current (it is missing a negative sign), but it is
otherwise equivalent.
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matrix representation

R¼ 1
μΔ

�Bd=μ0 0
0 1

� �
ð30Þ

where μ0 is the magnetic constant.28

The second method is to directly transform the Genack and
Redfield equations into Eq. (29) (with homogeneous Δ) via (30).
Let ½ρgr�1 and ½ρgr�2 denote the magnetic susceptibility and mag-
netization, respectively.29 Both the variables and the equations
must be transformed by the relations

½ρe�i ¼ ½R�ji½ρgr�j and ð31aÞ

∂t ½ρe�i ¼ ½R�ji∂t ½ρgr�j: ð31bÞ
Both methods have been used to verify the equivalency. The latter
method is valid only because both bases shared the same zero-
state, about which each system was linearized.

Eberhardt et al. and others express this high spin-temperature
model in terms of inverse spin-temperatures [1,7,20]. It is tedious
but straightforward to show that these are equivalent to linearized
equations in ρ that have been transformed to equations in Ω via a
linearized version of (19), under the following choice of basis:
½ρst�1 is the dipole-energy density and ½ρst�2 is the Zeeman energy

density. The component transformation from the standard basis to
this (inhomogeneous) basis is given by the ð1;1Þ�tensor transfor-
mation M : On-On, which has the matrix representation

M¼
1 BðrÞ
0 �BðrÞ

" #
: ð32Þ

The linearized map of the components of this basis to the
components of its thermodynamic dual basis is given by the (2,0)-
tensor transformation N : On-O, which has the matrix represen-
tation

N¼ �1

μ2Δ2

1=B2
d 0

0 1=BðrÞ2
" #

: ð33Þ

The ρ-variable equation is transformed to the Ω�variable equa-
tion by the relations

½Ωst�i ¼ ½N�ij½ρst�j and ð34aÞ

∂t ½Ωst�i ¼ ½N�ij∂t ½ρst�j: ð34bÞ

The ρ-variable and Ω�variable expressions of Genack and
Redfield's model are both equivalent to the high spin-
temperature limit of the model of magnetization transport here
presented.

4. Separative transport and the Fenske equation

From (27) and (28) it can be determined that a necessary and
sufficient condition for SMT at some time t and location r is that
∂rηðt; rÞ is nonzero. This condition implies several other necessary
conditions. First, it implies that B(r) is necessarily spatially inho-
mogeneous. Second, it implies that j½ρe�2ðt; rÞj is necessarily either
less than unity or spatially varying. Third, it implies that ½Ωe�1 is
necessarily spatially inhomogeneous. Finally, it implies that β is
necessarily spatially inhomogeneous. If the polarization is non-
unity or spatially varying, as is typically the case, the nonunifor-
mity of β is both a necessary and a sufficient condition for SMT. If
any of these conditions is not met in a region, no SMT occurs there.

Fenske developed a set of equations to describe the process of
mass separation in the fractional distillation of hydrocarbons [6].
These have become the standard for simple models of mass
separation.30 In this section, a model will be derived in the manner
of Fenske that is equivalent, in some operating regimes, to the
model of magnetization transport presented above. This will
highlight the separative aspect of magnetization transport.

Consider the discrete system illustrated in Fig. 9. It is analogous
to a fractional distillation column in which “tray” i contains a
certain ratio of one substance to another, and tray iþ1 contains a
greater concentration. Fig. 9 shows two “spin” trays in which the
two “substances” are spin-up and spin-down, described by the
fractions ξ↑i and ξ↓i , respectively. Let the total amount of spin in a
tray be fixed

ξ↑i þξ↓i ¼ 1: ð35Þ
Through an exchange process among the trays, tray iþ1

obtains a higher ratio between up- and down-spin. In a fractional
distillation column, concentration occurs by boiling liquid in a tray,
the vapor of which condenses in the tray above and contains
a higher concentration of the product, and fluid flows downward
for mass balance. In the spin system, the exchange occurs through
dipole–dipole interactions. Let αZ1 be the relative volatility
(typically α is not much larger than unity). The Fenske model

1 2 3 4 5

model parameters

1

0.2

0.4

0.6

0.8

2 3 4 5

5%

-5%

-10%

-15%

-20%

-25%

-30%

Fig. 8. (Top) A numerical solution for the polarization after a period of time-
evolution given an initial step-like distribution to high polarization and model
parameters as shown. The plot is 1801 rotationally symmetric about the origin.
(Bottom) The percent difference from our model to the semi-linear and linear
approximations showing large deviations near the transition.

28 See [21, p. 1]. The appearance of the magnetic constant is due to Genack and
Redfield's definition of dipole energy-density as the magnetization times �B=μ0 [1,
p. 83].

29 We use the definitions of Genack and Redfield. 30 See [22, p. 114].
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describes this process by the relation31

ξ↑iþ1

ξ↓iþ1

¼ α
ξ↑i
ξ↓i
: ð36Þ

Let ξ↑0 and ξ↑0 be the spin fractions of some reference tray
(0). Eq. (36) is a difference equation that can be solved in the
steady-state for the Fenske equation32,33

ξ↑i
ξ↓i

¼ αiξ
↑
0

ξ↓0
: ð37Þ

A continuum solution is found if tray i is taken to be spatially small
and mapped to the dimensionless spatial coordinate r ¼ r � ∂rB=Bd

(i.e. i-r). Polarization can be identified as

½ρe�2ðrÞ ¼ 2ξ↑r �1¼ 1�2ξ↓r ð38Þ
Eq. (37) can be written in terms of polarization. What is more
interesting, however, is that for α near unity, the following
equation is approximate (and exact in the limit):

½ρe�2ðrÞ ¼ tanhðaðr�r0ÞÞ ð39aÞ
where

a¼ α�1
αþ1

and r0 ¼
arctanh½ρ0

e �2
a

: ð39bÞ

Eq. (39) can be written in the standard basis by the simple relation
½ρε�2ðrÞ ¼ μΔðrÞ½ρe�2ðrÞ. Comparing this to (26) with a linear field B
(r), the following identification can be made:

α¼ 1þμB0ðrÞ½Ω0
E �1

1�μB0ðrÞ½Ω0
E �1

: ð40Þ

Recalling the definition of the SMT parameter β from (27e), we
write

α¼ 1þβ
1�β

: ð41Þ

This result connects the theory of separative magnetization transport
with the Fenske-style separation theory. For separation to occur, the
relative volatility α must be non-unity and the SMT parameter β
must be nonzero.34 These are two statements of the same rule.

This highlights the separative nature of transport in the spin
system. Small concentrations of magnetization develop in the
steady-state, and this can be considered separation of up-spin
and down-spin.

Beyond increasing jB0j, no mechanism to enhance this natural
separation is apparent in this single-spin species system, as it is in
a fractional distillation system, but as we will discuss in the
conclusions, we believe that an enhancement of this separative
effect is possible with the introduction of a second spin-species.
This will require a model that includes large-magnetization
regimes and three conserved quantities (e.g. total magnetic
energy, nuclear-spin magnetic moment, and electron-spin

magnetic moment). The model of Section 3 satisfies the former
requirement, but it is only valid for two quantities. However,
because the framework of Section 2 allows any number of
conserved quantities, future work will develop from it a three-
quantity model of magnetization transport.

5. Conclusions and prospects

We presented a framework for modeling the transport of any
number of globally conserved quantities in any spatial configura-
tion. We applied it to obtain a model of magnetization transport
for spin-systems that is valid in new regimes (including high-
polarization). Finally, we analyzed the separative quality of the
magnetization transport.

Separative magnetization transport (SMT) was explored, and
found to occur in a manner analogous to separative mass transport.
The analogy suggests that exploring ways of enhancing the SMT-effect
may yield a useful new technique of hyperpolarizing spins.

Much is known about separative mass transport, but much
remains unknown about SMT. A distillation column has temperature
and gravitational field gradients. Its components have different
volatilities, and so one is more represented in the vapor phase than
the other. Understanding how these factors affect separative mass
transport has been the key to harnessing separation. For SMT, we have
shown that it is necessary that the magnetic field be spatially varying.
Greater field-gradients induce greater separative transport. Previous
results have shown that diffusive transport is suppressed in a high
magnetic field gradient [7,8]. Conversely, the present results show that
separative transport is enhanced. Certain magnetic resonance technol-
ogies are currently better-equipped than others to take advantage of
this, such as magnetic resonance force microscopy (MRFM) [2,3,24],
which already operates in very high magnetic field gradients. How-
ever, typical concentrations, even in high magnetic field gradients,
may not be sufficient in many applications.

We conjecture from the preceding considerations that adding
a second spin-species to the system may be advantageous as follows:
with two spin-species (e.g. nuclear and electron), spatial gradients in
the magnetization of one will affect the transport of the other through
spin–spin interactions. Using magnetic resonance techniques to
locally induce such gradients in the magnetization of one species
that of the other may be concentrated. This is unlike dynamic nuclear
polarization (DNP) [9–11] in that no polarization is transferred from
one species to another: each species’ polarization is separately
conserved. The magnetization transport model presented in Section
3 does not include a second spin-species, but the transport frame-
work of Section 2 can be used to develop such a model. Once
experimentally validated, the model may be used to harness SMT to
hyperpolarize and drive magnetic resonance technology develop-
ment. This work is underway and forthcoming.
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Appendix A. Symbol reference

Sym. Definition

n Hodge star operator [13, p. 437-438]
α relative volatility (Eq. (36))
β separative mag. transport coef. (Eq. (27e))

Fig. 9. Two “trays” containing fractions of up-spin ξ↑ and down-spin ξ↓ . The
fraction ratio in tray iþ1 is related to that of tray i by the relative volatility α.

31 See [23, p. 35].
32 This is not the usual form of the Fenske equation, but it is equivalent.
33 The superscript of α is not an index, but an exponent.
34 As discussed in Section 3.3.5, βmust be spatially inhomogeneous for SMT to

occur, and so it must be nonzero over the region.
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B external spatially varying magnetic field
B dimensionless B (Eq. (24))

B0 spatial derivative of B (∂rB)
Bd average dipole magnetic field
cov covariance tensor (Definition 11)
Δ spins per unit volume (Definition 18)
Δ0 spatial derivative of Δ (∂rΔ)

Δ dimensionless Δ (Section 3.3.4)
d exterior derivative [13, pp. 362-372]
dn Hodge codifferential [13, pp. 438-439]

drα standard cotangent bundle basis
∂x partial derivative with respect to x
∂=∂rα standard tangent bundle basis
η separative mag. transport factor (Eq. (27c))
ðeiÞ thermodynamic covector basis (Definition 21)
ðeiÞ thermodynamic vector basis (Definition 21)
ðεiÞ thermodynamic covector basis (Definition 4)
ðEiÞ thermodynamic vector basis (Definition 7)
Φ an element of O (Definition 18)

F̂ Onsager's kinetic coefficients (Definition 8)

F̂ oz OZ-ansatz kinetic coefficients (Definition 14)

Γ̂ transport rate tensor (Definition 11)

Γoz OZ transport coefficient (Definition 14)
g spatial metric (Definition 2)
Ĝ entropy Hessian (Definition 12)
j spatial transport current (Definition 9)
μ magnetic moment of an individual spin
m dimension of U (Definition 1)
M basis transformation (Eq. (32))
n number of conserved quantities (Definition 3)
N basis transformation (Eq. (33))
○ map composition
� tensor product [13, p. 306]
Ω local thermodynamic potential (Definition 7)
O the set of smooth maps from U � R to V
On the set of smooth maps from U � R to Vn

p a point on U
P ε- to e-basis transform (Definition 21)
q conserved thermocovector (Definition 3)
ρ local quantity densities (Definition 5)
ðrαÞ standard spatial coordinate (Remark 1)
R basis transform (Eq. (30))
♯ sharp operator [13, p. 3413]
s local entropy density (Definition 6)
Ψ an element of O (Definition 18)
TU tangent bundle on U
TU tangent space at pAU
TnU cotangent bundle on U
Tn

pU cotangent space at pAU
U spatial manifold (Definition 1)

ξ↑i fraction of up-spin in tray i (Eq. (35))

ξ↓i fraction of down-spin in tray i (Eq. (35))
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