
PROPORTIONAL CONTROLLER DESIGN (P) 79

06.2 rldesign.P Proportional

controller design (P)

Proportional controller design is the task of choosing the gain K with which

the closed-loop system performs in a desirable manner. All three

performance classes—stability, transient response, and steady-state

error—can be affected by changes in the gain. However, with a gain

controller there is typically no way to satisfy strict requirements in all

categories. Typically, stability can be satisfied and transient response

characteristics can be partially satisfied. Varying the gain simply moves the

closed-loop poles along the root locus. However, often the root locus does

not pass through the closed-loop pole location required for ideal transient

response performance. Later, we will learn how to design controllers that

do not have this limitation.

Virtually always, we assume it is a requirement for the closed-loop system

to be stable, therefore we can immediately restrict our task to selecting from

those values of gain K for which the system is stable.

Recall from Chapter 03 trans the relationships between the location of

closed-loop poles and the corresponding transient response performance.

The parameters rise time Tr, peak time Tp, settling time Ts, and percent

overshoot %OS can all be related to the dominant closed-loop pole locations.

Criteria will be given in terms of these transient response performance

parameters and the design task will be to choose the best gain K such that

these requirements are met.

For most problems, we make the first- or second-order assumption for

higher-order systems and for first- and second-order systems with zeros

(see Lec. 03.3 trans.approx). Recall that, even if this is an inaccurate

assumption, it gives us a starting-point for design. We will always simulate

to evaluate the actual performance criteria of a given design.

The following procedure is one way to go about designing a proportional

controller. Let us keep in mind the adage that

plans are useless, but planning is essential.

Here is the procedure.

PROPORTIONAL CONTROLLER DESIGN (P) 80

1. Using the second- or first-order assumption, estimate the ideal location

of the closed-loop poles for the desired transient response criteria.

2. Construct a root locus plot and select the location on the root locus that

is closest to the desired closed-loop pole location. Using a computer,

determine to which value of gain K this location corresponds.

3. Solve for the closed-loop transfer function with this gain.

4. Simulate the response for a unit step command. Evaluate the

performance criteria. Iterate if necessary.

Example 06.2 rldesign.P-1 re:

proportional

controller

design

for

percent

overshoot

For a plant with transfer function

(s+ 13)(s+ 15)

(s+ 2)(s− 2)

design a unity feedback gain controller such that the system has a 20 percent

overshoot and minimal settling time.

We will use MATLAB. First, let’s define the transfer function.

G=zpk([-13,-15],[2,-2],1);

The desired closed-loop pole location is along the ray corresponding to 20

percent overshoot. Since this is available with the data cursor in the rlocus

plot, there is no need to compute the damping ratio or the angle of the ray.

Let us consider the root locus.

figure
rlocus(G) % root locus
grid on

This yields the correct root locus, but with insufficient resolution to

determine the proper gains. We can do better if we specify a higher

resolution for those regions, as follows.

figure
Ka=sort([0:1:50,0.22:.001:0.23,logspace(-3,3,500),Inf]);
rlocus(G,Ka) % root locus with custom gains
grid on

PROPORTIONAL CONTROLLER DESIGN (P) 81

−15 −10 −5

−5

5

K = 0.234

K = 0.032

%OS = 20

← settling time decreasing

<(s)

=(s)

From the figure, we can see that when the gain is either K = 0.032 or

K = 0.234, according to the second-order approximation, the %OS is 20. We

prefer the latter because of our requirement to minimize the settling time,

which decreases as the closed-loop poles move leftward. Nowwemust find

the closed-loop transfer function, which can be found as follows.

Gcl=feedback(K*G,1);

Now we are ready to simulate the step response to evaluate the actual

transient response.

t1=5; % final time
[y,t]=step(Gcl,t1);
stepinfo(y,t)

The command stepinfo computes the actual transient response

characteristics. The result is %OS = 24.5, greater than our requirement.

This discrepancy is not surprising, since we were using the second-order

approximation. Let’s look at a plot.a

PROPORTIONAL CONTROLLER DESIGN (P) 82

0.5 1 1.5 2

0.5

1

1.2

time (s)

y(
t)

Note that the steady-state error is nonzero (which we can’t really do

anything about). Looking back at the root locus plot, we see that as the

gain increases from here, the percent overshoot should decrease. We iterate

the gain to obtain K = 0.35. The final closed-loop step response is shown,

below.

0.5 1 1.5 2

0.5

1

1.2

time (s)

y(
t)

/y
(∞)

In this last plot we have divided by the steady-state value such that the

percent overshoot is clearly visible in the plot. This is a nice idiom, but it

is important not to forget that there is still a nonzero steady-state error!

aIt is striking that the initial condition does not appear to be satisfied. This is due to the
two zeros, which effectively differentiate the step input, which changes infinitely quickly at
the origin.

PROPORTIONAL CONTROLLER DESIGN (P) 83

Example using Python

The following was generated from a Jupyter notebook with the following

filename and kernel.

notebook filename: python_root_locus_design_example_01.ipynb
notebook kernel: python3

Problem statement

For a plant with transfer function

15000

s4 + 50s3 + 875s2 + 6250s+ 15000
(1)

design a unity feedback proportional controller such that the closed-loop

system has 10% overshoot and setting time less than one second.

We begin with the usual loading of modules.

import numpy as np # for numerics
import control as c # the Control Systems module!
import matplotlib.pyplot as plt # for plots!

Determining ψ

Let’s determine a target point ψ for a closed-loop pole.

Ts = 1 # sec ... target settling time
OS = 10 # percent ... target overshoot

The second-order approximation from Chapter 03 trans tells us that the

settling time specification implies a specific Re(ψ) and the overshoot a

specific angle ∠ψ. The real part is found from the expressions

Ts =
4

ζωn
and Re(ψ) = −ζωn ⇒ (2)

Re(ψ) = −
4

Ts
. (3)

PROPORTIONAL CONTROLLER DESIGN (P) 84

The angle is found via the equations

ζ =
− ln(%OS/100)√
π2 + ln2(%OS/100)

, (4)

tan(∠ψ) = π−

√
1− ζ2

ζ
, and tan(∠ψ) = Im(ψ)/Re(ψ). (5)

Remarkably simple expressions result:

Im(ψ)/Re(ψ) = π−

√
1− ζ2

ζ
(6a)

Im(ψ)/Re(ψ) = π+
π

ln(%OS/100) . (6b)

So, in the final analysis, the desired pole location ψ (assuming the

second-order approximation is valid) is given by the expression

ψ = −
4

Ts

(
1− j

π

ln(100/%OS)

)
. (7)

This formula holds beyond the scope of this problem. We define it as a

function.

def psi_fun(Ts,pOS):
return -4/Ts*(1-1j*np.pi/np.log(100/pOS))

psi = psi_fun(Ts,OS)
print("psi = %0.3g + j %0.3g" % (np.real(psi),np.imag(psi)))

psi = -4 + j 5.46

Design with the root locus

Defining a transfer function in Python is straightforward with the Control

Systems module (documentation here).

plant_tf = c.TransferFunction(15000,[1,50,875,6250,15000])

Now plant_tf is a transfer function object. We use the root_locusmethod

of the Control Systems module and also place the target point ψ, where

we’d like to have a closed-loop pole.

https://python-control.readthedocs.io/en/0.8.2/index.html

PROPORTIONAL CONTROLLER DESIGN (P) 85

p1 = c.rlocus(plant_tf) # compute root locus
plt.plot(np.real(psi),np.imag(psi),'kx')
plt.annotate(

'ψ',
(np.real(psi),np.imag(psi)),
textcoords='offset points',
xytext=(20,-2),
arrowprops={'arrowstyle':'->'}

)
plt.show() # display the plot

−30 −25 −20 −15 −10 −5 0 5

−20

−15

−10

−5

0

5

10

15

20

ψ

Real

Im
ag
in
ar
y

pole: -4.34+5.81j gain: 0.64

The root locus doesn’t go through our test point, but it does get close. Our

overshoot requirement suggests we should stay along a ray from the origin

to the root locus. Double-clicking the locus yields a data cursor that gives

the complex coordinate and corresponding gain. We choose the coordinate

−4.52+ j5.95 with its corresponding gain 0.64.

K1 = 0.64 # gain selection from root locus

PROPORTIONAL CONTROLLER DESIGN (P) 86

Now we need to evaluate via simulation the transient response performance

this yields.

Check and tune via simulation

We use the Control Systems module’s feedbackmethod to find the

closed-loop transfer function.

controller_tf = K1 # controller transfer function
closed_loop_tf = # closed-loop transfer function

c.feedback(K1*plant_tf)

Now we can simulate the step response using the Control System module

method step_response.

t,y = c.step_response(closed_loop_tf)

p2 = plt.plot(t,y)
plt.xlabel('time (s)')
plt.ylabel('step response $y(t)$')
plt.grid()
plt.show()

PROPORTIONAL CONTROLLER DESIGN (P) 87

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

0.0

0.1

0.2

0.3

0.4

time (s)

st
ep

re
sp
o
n
se
y
(t
)

It is difficult to evaluate the performance from the graph, so we use the

step_infomethod.

si = c.step_info(closed_loop_tf)
si

{'RiseTime': 0.28463337550583534,
'SettlingTime': 0.9079645665577206,
'SettlingMin': 0.35175282522378337,
'SettlingMax': 0.422669315052121,
'Overshoot': 8.279065668845002,
'Undershoot': 0.0,
'Peak': 0.422669315052121,
'PeakTime': 0.6440028887143202,
'SteadyStateValue': 0.39035183065283424}

Specifically, we want to know the overshoot and settling time.

print("percent OS: %3.3g" % si['Overshoot'])
print("settling time: %3.3g" % si['SettlingTime'])

PROPORTIONAL CONTROLLER DESIGN (P) 88

percent OS: 8.28
settling time: 0.908

This is pretty close to the requirements. We could tune the gain to try to get

closer.

