tntro Introduction

pid Introductng PID control p.1

intro.ptd Introductng PID control

1 One of the most ubiquitous types is the
proportional-tntegral-derivatve (PID)
controller. It has a transjer Sunction with
real constants Kp, K1, and Kp:

Cls)= Kp + Ki/s + Kps
~— —~— —~—
proportional integral derivagve

Remember: the controller operates on the error
E(s), so the PID controller eSfectively sums terms
proportional to the error, its integral, and its
derivative. Inspecting this in the time domain
with error e(t] by taking the inverse Laplace
trans§orm of the output Uls) = C(s)E(s),

€
ultl= Kpelt] +K; [el6)do+ Kpélt)
——
proportional derivative
integral

2 So the control eSfort u is responsive to:

PID controller

P the amount and direction of error (reactive, spring-like),

I the accumulagion of error over time (memoried, mass-like), and

D the time rate 0§ change of the error (anticipatory, damper-like).

Although the mechanical spring-mass-damper
analog above has its Limitatons, it is helpjul
Sor our intuition. More generally, we con
consider the three constants Kp, Ky, and Ky to be
“knobs” with which we can include more or less

oy each term.

3 Just how a controller will aSfect the
closed.-loop response is signi§icantly dependent
on the plant dynamics. Therejore, there is no
way to make Sully general statements about
the impact of each of the PID terms. This is why
we need the detailed analytic design tools of
Chapter rldesign and the intervening chapters

Table ptd.l: occasionally true generalities about PID

controller terms.

Proportional Integral Derivatve
- 18 the workhorse improves or speeds up the
- speeds up responses eliminates steady- response - can

can lead to
instability when

too large

state error - slows
down the response -
becomes o Lliability
when it can't Sorget

(integral windup)

yleld jitter when
measurement noise
is large - can lead
to instability when
measurement noise

is large

tntro Introduction

pid Introductng PID control p.1

hence. However, Sor some simple systems, we can

make the assertions of Table pid 1.

4 There are many methods o5 tuntag o PID
controller: selecting Kp, K1, and Ky to meet
certain perjormance criteria. The root Locus
design method of Chapter ridesign and the
Srequency response design method of

Chopter Sreqd allow us to precisely design Sor
speci§ic perormance criteria. However, there
are times when speci§ic performance criteria
and involved analysis are not available or
convenient. In these cases, hand.-tuning is
possible via several algorithms. One such
algorithm is presented in the Sollowing section.

Ziegler-Nichols tuning method

5 The Ziegler-Nichols method of tuning a PID
controller is presented in the Sollowing
algorithm.

1. Set KP' KI-KD =0.
2. Increase Kp until a marginally stable

! (s observed.

response
3. Record this ultimate gain Ky and the
oscillaon period Ty.

4. et the controller gains:

Example intro.pid-1
For the block diagram of Fig. pid.l, with the
plant

- 15000
51+ 5083 + 37552 + L250s + 15000

< use the Ziegler-Nichols method to design a PID

tuntng

root Locus

§requency response

1. This can be the impulse, step, or §ree response. Furthermore, it can be
oscillatory.

ultimate gain Ky
oscillagon period Ty

re: hand-tuning a PID controller

(Ao ol |

Figure pid.1: block diagram Sor Example intro.pid.-1.

tntro Introduction

ptd Introductng PID control p.2

E controller C(s).

We proceed with Matlab, symbolically at §irst.
Let's define the transjer Sunctions.

syms S kp ki kd / S is the laplace transform s
15000/ (S~4+50%S~3+875*372+6250*5+15000) ; 7 p
kp + ki/S + kd*S; J PID controller transfer f

G_sym

C_sym

From the preceding lecture’s ??, the closed.-loop

transjer §unction is as §ollows.

CL_sym = simplify(...
C_sym*G_sym/ (1+C_sym*G_sym)

CL_sym =

(15000%kd*S~2 + 15000%kp*S + 15000%ki)/(15000%S +
— 15000%ki + 15000%S*kp + 15000%S~2%kd + 6250%S~2
— + 875%873 + 50%S74 + S75)

1 have created a Sunction sym_to_tf that
creates a tf object, which well need S5or

simulaon.®

type sym_to_tf.m

function tf_obj = sym_to_tf(sym_tf,s_var)
° % TODO test to make sure s_var is in
[]

o — symvar(sym_tf)

ant

tntro Introduction

pid Introductng PID control p.3

syms (symvar (sym_t£f))

syms s

sym_tf = subs(sym_tf,s_var,s);
tf_str = char(sym_tf);

s = tf([1,0],[11);
eval(['tf_obj = ',tf_str,';']);

Let's wrap it in a Sunction of our own K_sub,
which will create a closed.-loop tf object jrom
our CL_sym with the PID gains included.

K_sub = @(Kp,Ki,Kd) sym_to_tf(...

subs(...
CL_sym, ...
{kp,ki,kd}, ...
{Kp,Ki,Kd} ...

),

S .

);
K_sub(1,0,0) 7 e.g.

15000 s

s”5 + 50 s74 + 875 s73 + 6250 s72 + 30000 s

Continuous-time transfer function.

Now let’s use impulse to simulate the response

starting with a small proportional gain.

[y,t] = impulse(K_sub(1,0,0));

tntro Introduction

pitd Introductng PID control p.4

Now, we should plot the result - see Fig. pid.2.

figure

plot(t,y)

grid on
xlabel('time (s)')

ylabel('impulse response')

15 we iteratively increase Kp = 1 — 3 — 523
(the response Sor each of these values is plotted
in Fig. pidd), we §ind that around the Llast
value, the system becomes marginally stable
and thereSore

Ku = 525

The oscillation period appears to be around Ty =
0.36 seconds. De§ining these quantities, we can
now compute K; and K §rom Eq. 3.

Ku = 5.25;

Tu = 0.56;

KP = 0.6%Ku;

KI = 1.2*Ku/Tu;

KD = 3*Ku*Tu/40;

disp(sprintf(...
'KP = %0.2f, KI = %0.2f, KD = %0.2f', ...
KP,KI,KD ...

)

°
e KP = 3.15, KI = 11.25, KD = 0.22

impulse response
o
l
.

0 0.5 1 13 2

Figure pld.2: impulse response with (small) Kp = 1.

10
E Kp=1
V | =
) P
§_ 0 fx7§°n_.— ________ K p= 3
o
3 K p= 5.25
= S
a.
5
-10

Figure pid.3: impulse responses with K; = Ky = 0 and Kp as
shown.

tntro Introduction

pldi Introductng PID control p.5

ELet’s try out this controller Sor step response
and see how it Looks.

[y,t] = step(K_sub(KP,KI,KD));
figure

plot(t,y)

xlabel('time (s)')
ylabel('step response')

The resulting step response is plotted in
Fig. pld.4. We didn't have speci§ic expectations
Sor per§ormance, here, but this result is a
nice, average-looking step response with some
overshoot and a decent settling time.

github.com/ricopicone/matlab-rico.

a The Sunction s available in the repo:

15
o 1 r
2
5
a.
g
a 05 r
)
s}
w
O 1 1 1
0 0.5 1 15 2
time (s)

Figure pld.4: closed.-loop step response with the PID
controller tuned by the Ziegler-Nichols method.

http://github.com/ricopicone/matlab-rico

