
intro Introduction pid Introducing PID control p. 1

PID controller

Table pid.1: occasionally true generalities about PID
controller terms.

Proportional Integral Derivative

• is the workhorse

• speeds up responses

• can lead to

instability when

too large

• improves or

eliminates steady-

state error • slows

down the response •

becomes a liability

when it can’t forget

(integral windup)

• speeds up the

response • can

yield jitter when

measurement noise

is large • can lead

to instability when

measurement noise

is large

intro.pid Introducing PID control

1 One of the most ubiquitous types is the

proportional-integral-derivative (PID)

controller. It has a transfer function with

real constants KP , KI , and KD:

C(s) = KP︸︷︷︸
proportional

+ KI/s︸︷︷︸
integral

+ KDs︸︷︷︸
derivative

. (1)

Remember: the controller operates on the error

E(s), so the PID controller effectively sums terms

proportional to the error, its integral, and its

derivative. Inspecting this in the time domain

with error e(t) by taking the inverse Laplace

transform of the output U(s) = C(s)E(s),

u(t) = KPe(t)︸ ︷︷ ︸
proportional

+ KI

ˆ t

0
e(θ) dθ︸ ︷︷ ︸

integral

+ KDė(t)︸ ︷︷ ︸
derivative

. (2)

2 So the control effort u is responsive to:

P the amount and direction of error (reactive, spring-like),

I the accumulation of error over time (memoried, mass-like), and

D the time rate of change of the error (anticipatory, damper-like).

Although the mechanical spring-mass­damper

analog above has its limitations, it is helpful

for our intuition. More generally, we can

consider the three constants KP , KI , and KD to be

“knobs” with which we can include more or less

of each term.

3 Just how a controller will affect the

closed-loop response is significantly dependent

on the plant dynamics. Therefore, there is no

way to make fully general statements about

the impact of each of the PID terms. This is why

we need the detailed analytic design tools of

Chapter rldesign and the intervening chapters

intro Introduction pid Introducing PID control p. 1

tuning

root locus

frequency response

1. This can be the impulse, step, or free response. Furthermore, it can be

oscillatory.

ultimate gain Ku

oscillation period Tu

hence. However, for some simple systems, we can

make the assertions of Table pid.1.

4 There are many methods of tuning a PID

controller: selecting KP , KI , and KD to meet

certain performance criteria. The root locus

design method of Chapter rldesign and the

frequency response design method of

Chapter freqd allow us to precisely design for

specific performance criteria. However, there

are times when specific performance criteria

and involved analysis are not available or

convenient. In these cases, hand-tuning is

possible via several algorithms. One such

algorithm is presented in the following section.

Ziegler–Nichols tuning method

5 The Ziegler–Nichols method of tuning a PID

controller is presented in the following

algorithm.

1. Set KP , KI , KD = 0.

2. Increase KP until a marginally stable

response1 is observed.

3. Record this ultimate gain Ku and the

oscillation period Tu.

4. Set the controller gains:

KP = 0.6Ku KI = 1.2Ku/Tu KD = 3KuTu/40.

(3)

Example intro.pid­1 re: hand­tuning a PID controller

C(s) G(s)
R E U Y

–

Figure pid.1: block diagram for Example intro.pid-1.

For the block diagram of Fig. pid.1, with the

plant

G(s) =
15000

s4 + 50s3 + 875s2 + 6250s + 15000

use the Ziegler–Nichols method to design a PID

intro Introduction pid Introducing PID control p. 2

controller C(s).

We proceed with Matlab, symbolically at first.

Let’s define the transfer functions.

syms S kp ki kd % S is the laplace transform s
G_sym = 15000/(S^4+50*S^3+875*S^2+6250*S+15000); % plant
C_sym = kp + ki/S + kd*S; % PID controller transfer fun

From the preceding lecture’s ??, the closed-loop

transfer function is as follows.

CL_sym = simplify(...
C_sym*G_sym/(1+C_sym*G_sym) ...

)

CL_sym =

(15000*kd*S^2 + 15000*kp*S + 15000*ki)/(15000*S +
15000*ki + 15000*S*kp + 15000*S^2*kd + 6250*S^2
+ 875*S^3 + 50*S^4 + S^5)

↪→

↪→

I have created a function sym_to_tf that

creates a tf object, which we’ll need for

simulation.a

type sym_to_tf.m

function tf_obj = sym_to_tf(sym_tf,s_var)
% TODO test to make sure s_var is in

symvar(sym_tf) ...↪→

intro Introduction pid Introducing PID control p. 3

syms(symvar(sym_tf))
syms s
sym_tf = subs(sym_tf,s_var,s);
tf_str = char(sym_tf);
s = tf([1,0],[1]);
eval(['tf_obj = ',tf_str,';']);

Let’s wrap it in a function of our own K_sub,
whichwill create a closed-loop tf object from

our CL_sym with the PID gains included.

K_sub = @(Kp,Ki,Kd) sym_to_tf(...
subs(...

CL_sym, ...
{kp,ki,kd}, ...
{Kp,Ki,Kd} ...

), ...
S ...

);
K_sub(1,0,0) % e.g.

ans =

15000 s

s^5 + 50 s^4 + 875 s^3 + 6250 s^2 + 30000 s

Continuous-time transfer function.

Now let’s use impulse to simulate the response

startingwith a small proportional gain.

[y,t] = impulse(K_sub(1,0,0));

intro Introduction pid Introducing PID control p. 4

0 0.5 1 1.5 2

time (s)

-0.5

0

0.5

1

1.5

2

im
pu
ls
e
re
sp
o
ns
e

Figure pid.2: impulse response with (small) KP = 1.

Now, we should plot the result – see Fig. pid.2.

figure
plot(t,y)
grid on
xlabel('time (s)')
ylabel('impulse response')

If we iteratively increase KP = 1 → 3 → 5.25

(the response for each of these values is plotted

in Fig. pid.3), we find that around the last

value, the system becomes marginally stable

and therefore

Ku = 5.25. (4)

The oscillation period appears to be aroundTu =

0.56 seconds. Defining these quantities, we can

now compute KI and KD from Eq. 3.

0 1 2 3 4 5

time (s)

-10

-5

0

5

10

im
pu
ls
e
re
sp
o
ns
e K P= 1

K P= 3

K P= 5.25

Figure pid.3: impulse responses with KI = KD = 0 and KP as
shown.

Ku = 5.25;
Tu = 0.56;
KP = 0.6*Ku;
KI = 1.2*Ku/Tu;
KD = 3*Ku*Tu/40;
disp(sprintf(...

'KP = %0.2f, KI = %0.2f, KD = %0.2f', ...
KP,KI,KD ...

))

KP = 3.15, KI = 11.25, KD = 0.22

intro Introduction pidi Introducing PID control p. 5

Let’s try out this controller for step response

and see how it looks.

[y,t] = step(K_sub(KP,KI,KD));
figure
plot(t,y)
xlabel('time (s)')
ylabel('step response')

The resulting step response is plotted in

Fig. pid.4. We didn’t have specific expectations

for performance, here, but this result is a

nice, average-looking step response with some

overshoot and a decent settling time.

0 0.5 1 1.5 2

time (s)

0

0.5

1

1.5

st
e
p
re
sp
o
ns
e

Figure pid.4: closed-loop step response with the PID
controller tuned by the Ziegler­Nichols method.

a. The function is available in the repo:

github.com/ricopicone/matlab-rico.

http://github.com/ricopicone/matlab-rico

