## intro.pidi An interactive PID controller design

1 In this lecture, we will build an interactive PID control design tool in Python. However, you need not install Python<sup>2</sup> to try the design tool: 2. For more on Python, see python. org. it is available at the following web page.

click to launch interactive page in browser

It may take a few minutes to load the Jupyter notebook.<sup>3</sup> Once it does, click Cell & Run All. This will run the Python code that comprises the remainder of this lecture. Scroll to the bottom of the webpage to interact with the PID gains that update the closed-loop step response plot!

2 For the unity feedback block diagram of Fig. pidi.1, we will design a PID controller C(s). Design requirements are (a) less than 20 percent overshoot, (b) an initial peak in less than 0.2 seconds, and (c) zero steady-state error for a step response.

3. For more on Jupyter, see jupyter.org.

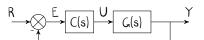


Figure pidi.1: a unity feedback control loop.

Python code in this section was generated from a Jupyter 3. notebook named pid\_interactive\_design\_python.ipynb with a python3 Kernel.

First, load some general-purpose Python packages.

import numpy as np # for numerics import sympy as sp # for symbolics import control as c # the Control Systems module import matplotlib as mpl # for plots import matplotlib.pyplot as plt # also for plots from IPython.display import display, Markdown, Latex The following Python packages are specific for the interactive widget.

from ipywidgets import \*
%matplotlib widget

Symbolic transfer functions

Let's investigate the transfer functions symbolically. We begin by defining the Laplace s and gain symbolic variables.

s,K\_p,K\_i,K\_d = sp.symbols('s K\_p K\_i K\_d')

We will design a PID controller for a plant with the following transfer function.

G\_sym = 15000/(s\*\*4+50\*s\*\*3+875\*s\*\*2+6250\*s+15000)
display(G\_sym)

15000

<del>s<sup>4</sup> + 50s<sup>3</sup> + 875s<sup>2</sup> + 6250s + 15000</del>

The controller has the following symbolic transfer function.

```
C_sym = K_p + K_i/s + K_d*s
display(C_sym)
```

$$K_ds + \frac{K_i}{s} + K_p$$

The closed-loop transfer function for the unity feedback system is as follows.

```
T_sym = sp.simplify(
 C_sym*G_sym/(1+C_sym*G_sym)
)
T_num, T_den = list( # for simplifying
 map(
    lambda x: sp.collect(x,s),
    sp.fraction(T_sym)
 )
)
T_sym = T_num/T_den
display(T_sym)
```

 $\frac{15000K_{i} + s (15000K_{d} s + 15000K_{p})}{15000K_{i} + s (15000K_{d} s + 15000K_{p} + s^{4} + 50s^{3} + 875s^{2} + 6250s + 15000)}$ 

Symbolic to control transfer functions

The control package has objects of type TransferFunction that will be useful for simulation in the next section. We begin by defining a function to convert a symbolic transfer function to a control TransferFunction object.

```
def sym_to_tf(tf_sym,s_var):
    global s # changes s globally!
    S = s_var
    s = sp.symbols('s')
    tf_sym = tf_sym.subs(S,s)
    tf_str = str(tf_sym)
    s = c.TransferFunction.s
    ldict = {}
    exec('tf_out = '+tf_str,globals(),ldict)
    tf_out = ldict['tf_out']
    return tf_out
```

This isn't smooth, but it works. Note that  $tf\_sym$  must have no symbolic variables besides  $s\_var$ , the Laplace s. We can apply this to  $G\_sym$ , then, but not yet  $C\_sym$ .

type(sym\_to\_tf(G\_sym,s))

control.xferfcn.TransferFunction

Defining the closed-loop function

We need to create a function that specifies the gains, substitutes them into the symbolic closed-loop transfer function, then converts it to a control package TransferFunction object via sym\_to\_tf.

```
def pid_CL_tf(CL_sym,Kp=0,Ki=0,Kd=0):
    sp.symbols('K_p K_i K_d')
    s = c.TransferFunction.s
    CL_subs = CL_sym.subs({K_p: Kp, K_i: Ki, K_d: Kd})
    return sym_to_tf(CL_subs,s)
```

For instance, we can let  $K_p = 1$  and  $K_i = K_d = 0$ .

display(
 pid\_CL\_tf(T\_sym,Kp=1)
)

 $\frac{1.5\times 10^4}{s^4+50s^3+875s^2+\text{G250s}+3\times 10^4}$ 

Step response

It is straightforward to use the control package's step\_response function to get a step response for a single set of gains.

gains = {'Kp':2, 'Ki':1, 'Kd':0.1}
sys\_CL = pid\_CL\_tf(T\_sym,\*\*gains)
t\_step = np.linspace(0,3,200)
t\_step,y\_step = c.step\_response(sys\_CL, t\_step)

Now let's plot it. The result is shown in Fig. pidi.Q.

fig = plt.figure()
ax = fig.add\_subplot(1, 1, 1)
line, = ax.plot(t\_step, y\_step)
plt.xlabel('time (s)')
plt.ylabel('step response')
plt.show()

intro Introduction

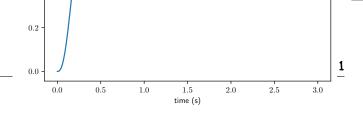


Figure pidi. 2: step response with  $K_p$ ,  $K_i$ ,  $K_d = 2, 1, 0.1$ .

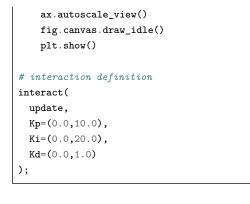
Interactive step response

The following essentially repeats the same process of

- 1. setting the PID gains with pid\_CL\_tf,
- 2. simulating with step\_response, and
- 3. plotting the response.

The caveat is that this happens with a GUI interaction callback function update that sets new gains (based on the GUI sliders), simulates, and replaces the old line on the plot. The final plot is shown in **??**. It appears to meet our performance requirements.

```
%matplotlib widget
# simulate
t_step = np.linspace(0,3,200)
sys_CL = pid_CL_tf(T_sym,Kp=1)
t_step,y_step = c.step_response(sys_CL, t_step)
# initial plot
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
line, = ax.plot(t_step, y_step)
plt.xlabel('time (s)')
plt.ylabel('step response')
plt.show()
# GUI callback function
def update(Kp = 1.0, Ki = 0.0, Kd = 0.0):
   global t_step, kp, ki, kd
   kp,ki,kd = Kp,Ki,Kd
    sys_CL = pid_CL_tf(T_sym,Kp=Kp,Ki=Ki,Kd=Kd)
    t_step,y_step = c.step_response(sys_CL, t_step)
   line.set_ydata(y_step)
    ax.relim()
```



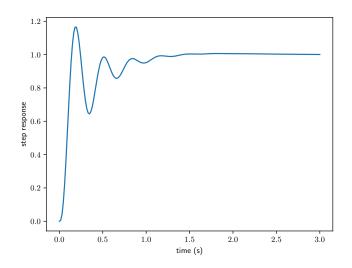


Figure pidi.3: step response from interaction with  $K_{p},K_{i},K_{d}$  = 3.1, 6.2, 0.8.

The sliders appear as shown in Fig. pidi.4.

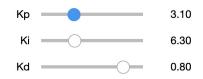


Figure pidi.4: this is how the sliders should look.