intro.exe Exercises for Chapter intro

Exercise intro.tabernacle

If a control system has a constant controller C(s) = K, unity feedback (H(s) = 1), and plant

$$G(s) = \frac{10}{(s+2)(s+5)},$$

what is the closed-loop transfer function? Express the result as a single fraction of polynomials in s.

Exercise intro.psalmody

What are the three primary performance criteria for most feedback control systems?

Exercise intro.calvous

Consider the block diagram of Fig. exe.1. Derive the transfer function from the command R(s) to the error E(s); that is, E(s)/R(s). This is sometimes called the **error transfer function**.

Exercise intro.telesis

If a PID control system suffers from poor steady-state performance, which term of a PID controller—that is, P, I, or D—is most likely to help and why?

Exercise intro.postulant

If a PID control system suffers from slow transient response performance, increasing which PID terms—that is, of P, I, and D—are most likely to help and why?

Exercise intro.mascaron

A given feedback control system meets its transient performance requirements, but has a finite steady-state error for a unit step command. How might you recommend augmenting

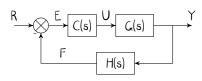


Figure exe.1: a block diagram with a controller C(s).

error transfer function

the controller to achieve zero steady-state error?

Exercise intro.

Stability performance