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7. For the interested reader, see this stackexchange discussion.

numerical root finders

8. Edward John Routh and Adolf Hurwitz were their names.

Routh­Hurwitz stability criterion

9. It is noteworthy that the criterion is based on the Routh-Hurwitz

theorem.

10. Nise, Control Systems Engineering, 7th Edition.

stab.routh Routh­Hurwitz criterion

There is no practical way to find the roots of

a polynomial greater than degree four.7 An

implication of this is that we cannot practically

solve (analytically) for the poles of a

closed-loop transfer function with degree

greater than four. Fortunately, numerical

root finders can handle these higher-order

systems with ease. However, there is a

drawback to using numerical root finders to

determine stability: design parameters, which

show up in the coefficients of the denominator

polynomial of a transfer function, must be

assigned a specific value.

A couple of mathematicians8 in the late 19th

century came up with a clever test—called the

Routh­Hurwitz stability criterion9—for

learning much about the stability of a system

without computing its poles; moreover, the test

yields an analytically tractable way to

determine ranges over which design parameters

yield stable closed-loop systems.

An algorithm for applying the

Routh-Hurwitz criterion

We consider an algorithm for this test. First,

we address the “basic” algorithm and refer the

reader to Nise10 for the two exceptions that

arise when Column 1 has a zero or when an

entire row is zero. You can teach this

algorithm (including the exceptions) to a

computer, as some have, but it is easy enough

by­hand for many systems.

Let the denominator of a closed-loop transfer

http://math.stackexchange.com/a/200622/144745
https://en.wikipedia.org/wiki/Routh%E2%80%93Hurwitz_theorem
https://en.wikipedia.org/wiki/Routh%E2%80%93Hurwitz_theorem
https://www.mathworks.com/matlabcentral/fileexchange/58-routh-m
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Table routh.1: the general form of the Routh table. Empty
cells are always zero.

1 2 3 4 · · ·

sn a0 a2 a4 a6 · · · · · ·

sn–1 a1 a3 a5 a7 · · · · · ·

sn–2 b1 b2 b3 b4 · · · · · ·

sn–3 c1 c2 c3 c4 · · · · · ·

sn–4 d1 d2 d3 d4 · · · · · ·
...

...
...

...
...

s2 e1 e2

s1 f1

s0 g1

Routh table

basic Routh table interpretation

function, with real coefficients ai be

a0s
n + a1s

n–1 + · · · + an–1s + an ,

where n a finite integer greater than or equal

to the order of the numerator polynomial and

a0 > 0 (if it is not, make it so by multiplication

by –1). Perform the following two steps.

First, construct a Routh table. The procedure

is to fill in the general form of the Routh table,

shown in Table routh.1, with the definitions:

b1 = –
1

a1

∣∣∣∣∣a0 a2
a1 a3

∣∣∣∣∣ , b2 = –
1

a1

∣∣∣∣∣a0 a4
a1 a5

∣∣∣∣∣ , b3 = –
1

a1

∣∣∣∣∣a0 a6
a1 a7

∣∣∣∣∣ , · · · (1)

c1 = –
1

b1

∣∣∣∣∣a1 a3
b1 b2

∣∣∣∣∣ , c2 = –
1

b1

∣∣∣∣∣a1 a5
b1 b3

∣∣∣∣∣ , c3 = –
1

b1

∣∣∣∣∣a1 a7
b1 b4

∣∣∣∣∣ , · · ·

d1 = –
1

c1

∣∣∣∣∣b1 b2
c1 c2

∣∣∣∣∣ , d2 = –
1

c1

∣∣∣∣∣b1 b3
c1 c3

∣∣∣∣∣ , d3 = –
1

c1

∣∣∣∣∣b1 b4
c1 c4

∣∣∣∣∣ , · · ·

...
...

...

g1 = –
1

f1

∣∣∣∣∣e1 e2
f1 0

∣∣∣∣∣ , g2 = –
1

f1

∣∣∣∣∣e1 0

f1 0

∣∣∣∣∣ , g3 = –
1

f1

∣∣∣∣∣0 0

0 0

∣∣∣∣∣ .

Note the pattern that emerges in Equation 1. The

number of rows and potentially nonzero

columns are n + 1 and
⌈
(n + 1)/2

⌉
. Potentially

nonzero values hug Column 1. Descending rows,

the number of potentially nonzero coefficients

decreases.

The second step is to interpret the Routh table.

For the basic Routh table, no poles lie on the
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imaginary axis (which excludes marginal

stability), so interpretation is simple: the

number of sign changes in Column 1 is equal

to the number of poles in the right

half-plane—and all others are in the left

half-plane. Therefore, the system is strictly

stable if its Routh array is of the basic type

and has no sign changes in Column 1.

Example stab.routh­1 re: Basic Routh table with an unknown

parameterGiven the closed-loop transfer function

s + 7

s3 + 3s2 + s + k
(2)

where k is a design parameter, using the Routh-

Hurwitz criterion, find the range of k for

which the closed-loop system is stable.

Let’s build the Routh table in Table routh.2.

The lower entries were computed from

Equation 1 (n.b. we knew b2 = 0, but compute it

for demonstrative purposes) as follows:

Table routh.2: Routh table for Example stab.routh-1.

1 2 3

s3 0

s2 0

s1 0

s0 0 0

→

1 2 3

s3 0

s2 0

s1 0

s0 0 0

b1 = –
1

a1

∣∣∣∣∣a0 a2
a1 a3

∣∣∣∣∣ = – 1
∣∣∣∣∣

∣∣∣∣∣ = ,

b2 = –
1

a1

∣∣∣∣∣a0 a4
a1 a5

∣∣∣∣∣ = – 1
∣∣∣∣∣

∣∣∣∣∣ = , and

c1 = –
1

b1

∣∣∣∣∣a1 a3
b1 b2

∣∣∣∣∣ = – 1
∣∣∣∣∣

∣∣∣∣∣ = .

Now we must interpret the result. Since the

first two entries in Column 1 are positive,

the last two must be in order for the system

stability. The conditions are:

> 0 ⇒ and

k > .
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Therefore, the range for stability is .

Expressed as an interval, k ∈ .


