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steady.error Steady-state error §or unity jeedback
systems

1t is uncommon Sor a Seedboack system to be
truly “unity.” However nonunity jeedback
systems can be re-written and evaluated in
terms OS unity Seedloack Couﬂ’cerpo\r‘ts,1 For this 1 For more details, see Nise. (Norman S. Nise. Control Systems
. . Engineertng. Sixth. John Wiley & Sons, Inc, 2011, Section 7.6)

reason, we will jocus on unity Seedboack

sgstems.

First we recall the §inal value theorem. Let Sinal value theoren
5(t) be a. junction of time that has a “§inal

value” §(oo) = Limg_y o0 5(t). Then, Srom the Laplace

transSorm of §(t), F(s), the §inal value is

5loo) = Limg_, o sF(s).
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Let’s consider the unity Seedback system of

Figure error.l with command R, controller
Figure errorl: unity Seedbock block diagram with

transjer Sunction Gy, plant transfer Sunction controller Gy(s) and plant Gols).

G, and error E. Recall that we call e(t) or (its
Laplace transSorm) E(s) the error. We want to
know the steady-state error, which, §rom the

§inal value theorem, is

eloo) = Lim sE(s).

s—0
Now all we need is to express E(s) in more
convenient terms. For the analysis that jollows,
we combine the controller and plant:
Gls) = Gy(s)Cyls). From the block diagram we can
develop the trans§er junction jrom the
command R to the error E.
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Equation 2 error trans§er Sunction

Given a speci§ic command R and jorward-path
trans§er Sunction G, we could take inverse
Laplace trans§orm of E(s) to §ind e(t) and take
the Limit. However, it is much easier to use the
§inal value theorem:

This Last expression s the best we can do
without a speci§ic command R. Three diS§erent
commands are typically considered canonical.
The §irst is now developed in detail, and the
results oj the other two are given below. First,
consider a unit step command, which has
Laplace trans§orm R(s) = 1/s.

where we let K, = Limg o Gls). We call K, the

position constant. IS K, is large, the position constant
steady-state error is small. 15 K, is infinitely

large, the steady-state error is zero. 15 K, is

small, the steady-state error is a §inite

constant.
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The Sorm of Gls) has implications Sor K,. Gls) has
a Sactor 1/8" where n is some nonnegative
integer. Since we are concerned about what
happens to Gls) when we take its Limit as's — O,
this Sactor is of particular importance. 1§
n>0,K; = limg_, Gls) = co. We call the transfer
Sunction 1/s an integrator, which is the inverse
0§ the transfer Sunction s, the differentiator.

We needn't solve Sor £ explicitly, then. ALl we
need. to know is the command R and the number
0§ integrators n in the Sorward-path transfer
Sunction G(s) (we call this the system type).

The steady-state error Sor other commands
and system type can be derived in the same
manner. The results Sor the canonical inputs are
shown in Toble error.l.

Exampte steady.error-1

« Let a system have Sorward-path transjer

tntegrator

diSerentiator

system type

re: steady-state error

Table error.l: the static error constants and steady-state error §or canonical commands r(t) and systems of
Types 0, 1, 2, and n (the general case). Note that the Saster the command changes, the more integrators are

regquired Sor §inite or Zero steady-state error.

Type n Type O Type 1 Type 2
error error error error
r(t) e(oo eoco eloo e(oo)
const. const. const. const.
us(t) Ky = Lim Gs) L K 1 00 0 00 0
P50 1+Kp P L+Kp
_ 1
tus(t) Ky = sL;r?) sGls) K
1

1
itaus(’c) Ko = SLL:(\) s2G|s) ™
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L]
« Sunction
°

10(s +3)(s + 4)
Cls) = sls+1)(s2+2s+9)

For commands ri(t) = Qus(t) ralt) = Gtus(t)
and ry(t) = Ttdus(t), what are the steady-state
errors?




