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rlocus.sketch Sketching the root locus

It is easy to get lost in the detailed rules of

manual root locus construction. In the “old

days” accurate root locus construction was

critical, but now it is useful only for gaining

intuition for how a given system will behave

given its open-loop transfer function—which is

extremely useful for design. If a detailed root

locus is desired, we should use the computer

tools of Lec. rlocus.comp.

We will construct a procedure for sketching a

root locus from the following rules. In what

follows phrases such as “has locus” are used to

describe curves in the complex plane for which

the root locus is defined. That is, everywhere

in the complex plane for which the root locus is

defined is said to “have locus.” Note that some

of the following rules only apply for K > 0.

R1. The root locus begins at open-loop

poles, where K = 0, and approaches

open-loop zeros, where K→∞. This was

shown in Lec. rlocus.def to follow from

the form of the closed-loop transfer

function.

R2. The number of branches of the root

locus is equal to the number of

closed-loop poles. The number of

closed-loop poles is equal to the number

of open-loop poles or zeros, whichever is

greater.

R3. The root locus is symmetric about the

real­axis. This is due to the fact that

poles can “leave” the real­axis only as

conjugate pairs.
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Figure sketch.1: a root locus example for illustrating
the geometric interpretation of the phase criterion on the
real axis.

poles at infinity

zeros at infinity

R4. On the real­axis, there is locus

wherever an odd number of open-loop

zeros and poles are on the real­axis,

to the right—and no locus, elsewhere.

This is a consequence of the phase

criterion, Eq. 6. Recall, from Appendix A.01,

the geometric evaluation of transfer

functions. The phase criterion states that,

for locus, ∠KG(s)H(s) must always be π or

its equivalent, so, for a test point ψ, the

sum of the angles from each of the

open-loop poles and zeros to ψ must be π

or its equivalent, as can be illustrated in

Fig. sketch.1. Due to the fact that every

off­axis pair of open-loop poles or zeros

contributes no net angle (because their

angles are equally opposite), only poles

and zeros on the real axis contribute to

the phase of a given point on the real

axis. When the point is to the right of

every real­axis pole and zero, all the

angle contributions are zero, and the

phase criterion is not met. Moving the

point leftward and it passes a pole or

zero, the angle becomes ±π, satisfying the

angle criterion. Continuing leftward,

each time it crosses a pole or zero, ±π is

added, toggling satisfaction of the angle

criterion.

R5. “Missing” poles and zeros are paired

with infinite zeros and poles,

asymptotically. An open-loop transfer

function with a different number of poles

and zeros is said to have “missing” poles

or zeros. This is because the root locus

begins at open-loop poles and approaches

open-loop zeros—but what about systems

with missing open-loop poles or zeros? For

these situations, the root locus begins or

ends at poles or zeros at infinity. For a

system with more poles than zeros, which
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non-causal system

real­axis intercept σa

is quite common, some poles approach zeros

at infinity, asymptotically. Conversely,

for a system with more zeros than poles,

which is uncommon and is called a

non-causal system, some branches of the

root locus begin asymptotically from

poles at infinity. Asymptotes originate at

a single real­axis intercept σa , which

can be shown to be related to the finite

poles pi and zeros zj , with np and nz the

number of poles and zeros, as follows.

Equation 1 root locus asymptote

real­axis intercept

Note that the imaginary parts of the

poles and zeros cancel, so they needn’t be

considered. With N ≡ np – nz , the number

of asymptotes is |N|. Each is a ray that

originates at σa , and all that remains

undetermined is the angle of each ray,

which can be shown to be as follows, for

all m ∈ Z.

Equation 2 root locus asymptote

angles

Note that these repeat every |N|

consecutive values of θm.

Every root locus (with K > 0) will satisfy the

rules above. They will help us construct

sketches with the following procedure.
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RL1. Sketch the open-loop poles and zeros.

According to Rule R1, the root locus starts

at the open-loop poles and ends at the

open-loop zeros.

RL2. Sketch real­axis locus in accordance

with Rule R4. Let’s start with a win.

Begin at the right of all real­axis poles

and zeros (where there is never locus)

and move leftward, toggling for each

pole or zero, “no locus, locus, no locus,

locus ….”

RL3. If applicable, determine poles or zeros

at infinity and draw asymptotes.

Determine the number of finite poles np

and finite zeros nz. Compute N = np – nz. If

N > 0, there are |N| zeros at infinity; if

N < 0, there are |N| poles at infinity; and

if N = 0, there are neither poles nor zeros

at infinity and the rest of this step

should be skipped. Compute the asymptote

real­axis intercept σa from Eq. 1. Compute

|N| asymptote angles θ0 , θ1 , · · · from Eq. 2.

Sketch the asymptotes.

RL4. Finish the root locus sketch, respecting

all rules. Typically, a qualitatively

accurate sketch can now be constructed,

which is our goal.

Example rlocus.sketch­1 re: sketching the root locus

Sketch the root locus for the open-loop

transfer function

3(s + 1)

(s + 3)(s + 5)
.
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Example rlocus.sketch­2 re: sketching the root locus

Sketch the root locus for the open-loop

transfer function

53

(s + 5)(s2 + 2s + 2)
.
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