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rldesign.PI Proportional-integral (PI) controller design

When studying steady-state error, we

discovered that the more integrators (s–1) in

the open-loop transfer function, the better the

steady-state error. PI control includes

integrator compensation to a proportional

controller without significantly affecting the

transient response. Later, we will deal with

how to design for transient response.

Here’s the plan: include an integrator (i.e. pole

at the origin) in the controller and a nearby

zero to counter the pole’s (slowing) effects on

the transient response.

Why does the integrator affect the transient

response? Adding a pole at the origin

completely changes the root locus, and

therefore the location of the closed-loop poles,

and therefore the transient response.

In order to mitigate this, we place a zero near

the origin, which nearly cancels the

integrator’s effect on the root locus. To see

this, recall that the root locus must meet the

phase criterion (Lec. rlocus.def). Let us

meditate on Fig. PI.1, in which a system is

presented that initially contained the three

left half­plane poles and no zeros. Including

the integral pole at the origin (integrator)

and zero nearby, we obtain the root locus

shown. From the phase criterion,

–θ1 + θ2 – θ3 – θ4 – θ5 = π± 2πm (m ∈ Z). (1)

If the compensator zero is placed close to the
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Figure PI.1: the effect of the integral compensator
on the root locus’s angle condition.

pole, then θ2 – θ1 ≈ 0 and the root locus is

mostly unchanged from its pre-compensation

state.

Design procedure

The following design procedure can guide us

through this typically straightforward

controller design.

1. Design a proportional controller to meet

transient response requirements by

choosing the gain K for the dominant

closed-loop poles to be p1,2.

2. Include cascade integral compensation

and a real zero near Re(p1,2)/10.

3. Tune the gain K such that the close-loop

poles are as desirable as possible.

4. Simulate the time response to see if it

meets specs. Tune. If the steady-state

compensation is too slow, try moving the

zero leftward.



rldesign Root-locus design PI Proportional-integral (PI) controller design p. 2

Example rldesign.PI­1 re: PI control for percent overshoot

For a plant with transfer function

10

(s + 2)(s + 5)

design a unity feedback PI controller such that

the system has %OS = 20 andzero steady-state

error for step inputs.

We will use MATLAB. First, let us observe

that with no integrators in the plant (Type

0 system), the system will have a finite

steady-state error to step inputs. Therefore,

we require integral compensation. Let’s define

the transfer function.

sys1 = zpk([],[-2,-5],10);

The desired closed-loop pole location is along

the ray correspondingto 20 percent overshoot.

Since this is available with the data cursor in

the rlocus plot, there is no need to compute the

damping ratio or the angle of the ray. Let us

consider the root locus.

figure;
rlocus(sys1,sort([0,.225,4:.1:10,Inf])

);
ylim([-10,10])
grid on
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From the figure, we can see that when the

gain is K1 = 4.9, according to the second-order

approximation, the %OS is 20. This occurs at the

test point stp = –3.5+j6.84. If we were designing

simply a P controller, we would now simulate

the closed-loop response with this gain. Before

we simulate, let’s apply integral compensation.

We put a pole at the origin as the integrator

and compensate with a nearby zero. We

start with that zero at Re(stp)/10 = –0.35. Our

compensator has the transfer function

s + 0.35

s

and can be applied to the open-loop transfer

function as follows.

sReal = -3.5;
zeroc = sReal/10;
comp = zpk([zeroc],[0],1); %

compensator
sys2 = K1*comp*sys1; % controlled open

-loop tf

Now a new root locus analysis is required in

order to determine the new gain required to

get back near the test point. This is shown

below.
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We see that the cascade gain required to return

to the overshoot ray is K2 = 0.94.

Now we must find the closed-loop transfer

functions for each controller design, which

can be found as follows.

sys1cl = feedback(K1*sys1,1);
sys2cl = feedback(K2*sys2,1);

Now we are ready to simulate the closed-

loop step response to evaluate the actual step

response for each controller design.

tvec = 0:.01:8;
y1 = step(sys1cl,tvec);
y2 = step(sys2cl,tvec);
stepinfo(y1,tvec)

The command stepinfo computes the simulated

transient response characteristics. The result

is %OS = 20.0, good! Note that we used the

P controller for this evaluation. The strict

definition of this gives a skewed value due
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to the steady-state error compensation. Let’s

take a look at a plot comparing the two step

responses.
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Note that the PI-controlled system has

steady-state error approaching zero and

that the two systems have similar transient

response characteristics, per our expectation.

The steady-state error does respond relatively

“slowly” because the third closed-loop pole

introduced by the integral compensator

is relatively close to the imaginary axis.

Moving the compensator zero leftward can

speed this response, but transient responses

will be increasingly effected. In this case,

the settling time determined by the complex

closed-loop poles (we could call this the

“transient settling time”) will increase as we

move the zero leftward. However, the settling

time determined by the integrator (we could

call this the “steady-state settling time”) will

simultaneously decrease. Specific system

requirements would determine how we balance

these considerations.
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Our final controller design has transfer

function

K1K2 ·
s + 0.35

s
= 4.61 · s + 0.35

s
.


