rldesign Root-Locus design

PLog Proportional-lag controller design p.1

rldesignPLag Proportional-lag controller design

PI control can be approximated by
proportional-lag control. Instead of adding a
true integrator and increasing the system type,
which the integral compensator does, yielding
Zero steady-state error Sor a system and input
combination with §inite steady-state error, the
lag compensator reduces the steady-state
error by some §inite jactor in the same
instance. An advantage o5 using a lag
compensator instead 0§ an integrator is that

it can be instantiated in a passive circuit.

Design procedure

The Sollowing procedure provides a
starting-point Sor proportional-lag controller
design. Let's assume the steady-state error
design specification is to improve o §inite
steady-state error by a Sactor of «.

1. Design a proportional controller to meet
transient response requirements by
choosing the gain Ky Sor the dominant
closed.-loop poles to be py 5.

2. Include a cascade lag compensator of the
Sorm

s-Z¢

S_Pc.

Ky

where p. < 0 is a real pole near the
origin; Z¢ s a real zero near apg:? and.,
initially Ky = 1. For minimal eSfect on the
original transient response design,
Relpi5) < Zc, but this is often violated
Sor Saster steady-state error
compensagon.

3. Use a new root Locus to tune the gain Ky
such that the closed.-loop poles are as

proportional-lag

lag compensator

2. There are more precise ways to corpute a location of = based
on o specified Sactor o of steady-state error improvement that
depend on the system type and command. However, given the complex
tradeo$s among steady-state error, its speed, and transient response
perSormance, we often will re-ad just the gain in any case, making
optimization, here, premature.

rldesign Root-Locus design

PLog Proportional-lag controller design p.1

desirable as possible. This step can often
be omitted.

4. Construct the closed.-loop transjer
Sunction with the controller

s-Z¢

S"Pc.

KiKq

5. Simulate the time response to see (5 it
meets specifications. Tune. 1§ the
steady-state compensation is too slow, try
moving Zc and./or p. lejtward. 1§ it is

too large, increase the ratio Z¢/p.

A design example

Let a system have plant transjer Sunction

s+10
s+ 85+

Design o proportional-lag controller such that
the closed.-loop settling time is less than 0.4
seconds and the step response has steady-state
error 10 times less than with o proportional

controller, alone.

We use Matlab jor the design. First, we design
o proportional controller to meet the transient
response perjormance criterion that the the
settling time Ts is Less than 0.4 seconds. The root
locus is shown in Figure PLag.l.

G = t£([1,10],[1,8,251);
figure

rlocus(G)

rldesign Root-Locus design

PLag Proportional-lag controller design p.2

Im(s)
5 1
Re(s)
-20 3
~5 1
Figure PLagl: root Llocus 5Sor proportional

controller design.

Let's use the second.-order approximation that

where p1 5 are the closed.-loop pole Locations.
For Ts = 0.4, Relp;5) = -10. This corresponds to a
gain of about

Ky = 12.

Let’s construct the compensator and
corresponding closed.-loop transfer Sunction Cp
Sor gain control.

rldesign Root-Locus design

PLog Proportional-lag controller design p.3

G_P = feedback(K1*G,1)

IO
o
]

12 s + 120

s72 + 20 s + 145

Continuous-time transfer function.

Now, we use cascade lag compensation with

compensator

For now, we set K5 = 1. Our steady-state error
speci§ication is a 10-old Sactor of decrease in
steady-state error, so we set o = 10. 1§ we
begin, somewhat arbitrarily, with p. =-0.1, then
Zc = apg = -1, which is still comjortably distant
jrom pi 5. Let's construct the compensator and
closed.-loop transfer Sunction Gp.

alpha = 10;
p_c = -0.1;
z_c = alpha*p_c;

C_L = zpk(z_c,p_c,1)
G_PL = feedback(K1*C_L*G,1);

rldesign Root-Locus design

PLog Proportional-lag controller design p.4

Continuous-time zero/pole/gain model.

We could check out the root locus, but as
along as we haven't botched something, it
should be quite similar to the original. Let's
simulate the step responses jor the

proportional and proportional-lag controllers.

t_a = linspace(0,2,100); 7 simulation time

y_P = step(G_P,t_a); / p control step response

y_PL = step(G_PL,t_a); 7 p-lag control step response

Let's Look at the simulation results, shown in
Figure PLag.2. The settling time Sor the
proportional controller Looks about right, but
the steady-state error is about 13%. We'd Like
Lt to be about 1.3%. The Lag compensator has a
similar transient and a slow steady-state error
decrease. It's so slow that we can't really
evaluate its size ajter two seconds. Rather
than extend the simulation, we choose to speed up
the steady-state error compensagion by moving
the compensator pole and zero Lejtward.

C_L2 = zpk(2*z_c,2%p_c,1)
G_PL2 = feedback(K1*C_L2*G,1);
y_PL2 = step(G_PL2,t_a);

rldesign Root-Locus design PLag Proportional-lag controller design p.5

1
03 |- =
b
<
2 0L [|
3
[
a 04 i
V)
)
? 0.2 ——P control |
——P-lag control
O | | T
0 0.5 1 15 o]

time (s)

Figure PLag.2: step responses Sor proportional and
proportional-lag controllers (initial designl.

1
03 =
]
c
%_ 0.b [=
b
a 041 =
3 —— P control
? oal ~PL control ||
PL2 control
O | | T
0 05 1 15 2

time (s)

Figure PLag.3: step responses Sor proportional and
proportional-lag controllers (secondary design).

Continuous-time zero/pole/gain model.

From Figure PLag, we see that there's
improvement. Let's try increasing the gain Ky
and moving the compensator pole and zero
leStward more aggressively to see 1§ we can

rldesign Root-Locus design

PLog Proportional-lag controller design p.b

step response

—— P control

——PL control
PLQ control

——PL3 control

time (s)

1

13

Figure PLag.4: step responses Sor proportional and
proportional-lag controllers (tertiary design).

speedk things up o bit.

K2 = 1.45; J compensator gain

G_PL3 = feedback(K1*C_L3%G,1);
y_PL3 = step(G_PL3,t_a);

C_L3 = K2*zpk(2.8%z_c,2.8*p_c,1)

C_L3 =

1.45 (s+2.8)

(s+0.28)

Continuous-time zero/pole/gain model.

From Figure PLag4, Lt appears to meet both

specifications. Let’s use stepinfo to investigate

the transient perjormance.

si_PL3 = stepinfo(y_PL3,t_a);
si_PL3.SettlingTime

rldesign Root-Locus design

PD Proportional-lag controller design

p.7

‘ans=

\ 0.2660

This more than meets our settling time
reguirement oj 0.4 seconds. The steady-state

error can be approximated as jollows.

disp(...
sprintf (...
'steady-state error: %0.3ghhk',...
100%(1-y_PL3(end)). ..
).

steady-state error: 1.46

This meets our goal of 1.3%. Further iteraton
could be tighten-up the design.

