
rldesign Root-locus design PD Proportional-derivative (PD) controller design p. 1

derivative compensator

–5 –4 –3 –2 –1 1 2
–2

2

Figure PD.1: root locus for a simple plant with two poles.

rldesign.PD Proportional-derivative (PD) controller design

Thus far, our designs have been restricted to

closed-loop pole locations on the original root

locus. We could add integral or lag

compensation for steady-state error

performance and vary the gain for transient

response performance. But what if we desire

closed-loop poles p1,2 to be in a location that

the root locus does not intersect?

Among many possible methods to address this, we

pursue the following: a derivative compensator

with zero location zc chosen such that the root

locus intersects p1,2 , with form

K(s – zc), (1)

where K ∈ R is a gain. This compensator is

called “derivative” because its primary effect

on the overall controller’s operation on the

error e is a new factor of s, yielding a scaling

of the term sE(s) = ė(t).

The effect of this zero is to pull the locus

toward it. Consider the simple plant of

Fig. PD.1. Suppose we would like to speed up the

closed-loop response, but cannot because, no

matter how much gain we use, the settling time is

fixed by the vertical asymptotes. If we use a

compensator zero at zc , we can pull the locus

leftward, as shown in Fig. PD.2. Varying zc from

–∞ to 0, we see that any location left of –2 can

be intersected. In fact, if we consider both

positive and negative gains for this example,

we can place a desired closed-loop pole at

any location in the complex plane!



rldesign Root-locus design PD Proportional-derivative (PD) controller design p. 1

zc = –10 zc = –8 zc = –6 zc = –4 zc = –2 zc = 0

Figure PD.2: root locus (blue) for plant with poles (red) compensated with a zero (green) at zc. Note that
varying zc yields root loci that can intersect any point in the complex plane if negative gains are considered.
An animation corresponding to this figure can be found at https://youtu.be/VZbT_2bT2xU.

3. The 2π modulo in these expressions is suppressed for clarity.

compensator angle

4. See Lec. rldesign.multd for how to handle required angle

compensations beyond ±π.

5. Note that θc ∈ [–π, 0) is possible only when Imψ < 0 and θc ∈ (0,π] is

possible only when Imψ > 0.

A way to approach designing a controller for a

plant G with a derivative compensator C is to

consider the compensator zero’s effect on the

phase criterion, which must always be satisfied

at points on the root locus:

∠(G(s)C(s)) = π. (2)

In order for a desired point s = ψ to be on the

root locus, then,3

∠(G(ψ)C(ψ)) = π

∠G(ψ) + ∠C(ψ) = π⇒

∠C(ψ) = π – ∠G(ψ)⇒

∠(ψ – zc) = π – ∠G(ψ).

Let this angle ∠(ψ – zc), called the compensator

angle, be given the symbol

θc ≡ ∠(ψ – zc). (3)

Then

zc = Re(ψ) – Im(ψ)/ tan θc (θc ∈ [–π,π]), (4)

where we have limited the application of this

result to θc ∈ [–π,π] because a single zero can

contribute angles in this interval only.4,5 This

result is to be used in the design procedure

that follows. It can be understood

geometrically as the position of zc such that

the angle of the vector with tail at zc and

head at ψ is θc.

https://youtu.be/VZbT_2bT2xU


rldesign Root-locus design PD Proportional-derivative (PD) controller design p. 1

Design procedure

The following procedure provides a

starting­point for proportional­derivative

controller design. Let’s assume the transient

response specification is such that we desire a

closed-loop pole to be located at s = ψ.

1. Design a proportional controller to meet

transient response requirements by

choosing the gain K1 for the dominant

closed-loop poles to be as close as

possible to ψ.

2. Include a cascade derivative

compensator of the form

K2(s – zc), (5)

where, initially, K2 = 1 and zc is a real

zero that satisfies Eq. 4. For convenience,

we repeat the two key formulas:

θc = π – ∠G(ψ) and

zc = Re(ψ) – Im(ψ)/ tan θc (θc ∈ [–π,π]).

3. Use a new root locus to tune the gain K2
such that a closed-loop pole is at ψ.

4. Construct the closed-loop transfer

function with the controller

K1K2(s – zc). (6)

5. Simulate the time response to see if it

meets specifications. Tune.

A design example

Let a system have plant transfer function

1

(s + 2)(s + 6)(s + 11)
. (7)

Design a PD controller such that the

closed-loop settling time is about 0.8 seconds

and the overshoot is about 15%.



rldesign Root-locus design PD Proportional-derivative (PD) controller design p. 2

6. See ricopic.one/control/source/pd_controller_design_example.m for

the source.

Determining ψ

We use Matlab for the design.6 First, we must

determine what the specified transient response

criteria imply for the locations of our

closed-loop poles. Let one of these desired

pole locations be called ψ. The transient

response performance criteria are as follows.

Ts = .8; % sec ... spec settling time
OS = 15; % percent ... spec overshoot

The second-order approximation from

Chapter trans tells us that the settling time

specification implies a specific Re(ψ) and the

overshoot a specific angle ∠ψ. The real part is

found from the expressions

Ts =
4

ζωn
and Re(ψ) = –ζωn ⇒ (8)

Re(ψ) = –
4

Ts
. (9)

The angle is found via the equations

ζ =
– ln(%OS/100)√
π2 + ln2(%OS/100)

, (10)

tan(∠ψ) =

√
1 – ζ2

ζ
, and tan(∠ψ) = – Im(ψ)/ Re(ψ).

(11)

A remarkably simple expression results:

Im(ψ) = – Re(ψ)

√
1 – ζ2

ζ
(12a)

Im(ψ) = – Re(ψ)
π

ln(100/%OS)
. (12b)

http://ricopic.one/control/source/pd_controller_design_example.m


rldesign Root-locus design PD Proportional-derivative (PD) controller design p. 1

So, in the final analysis, the desired pole

location ψ (assuming the second-order

approximation is valid) is given by the expression

ψ = –
4

Ts

(
1 – j

π

ln(100/%OS)

)
. (13)

This formula holds beyond the scope of this

problem. We define it as an anonymous function.

psi_fun = @(Ts,pOS) -4/Ts*(1-1j*pi/log(100/pOS));
psi = psi_fun(Ts,OS);
disp(sprintf('psi = %0.3g + j %0.3g',real(psi),imag(psi)))

psi = -5 + j 8.28

P control

We design a proportional controller that gets

us as close as possible to ψ. The root locus is

shown in Figure PD.3.

G = zpk([],[-2,-6,-11],1);
figure
rlocus(G)

Although we cannot get close to ψ on the root

locus, we can at least meet our %OS

specification by choosing a gain of about

K1 = 240. (14)

Let’s construct the compensator and

corresponding closed-loop transfer function GP
for gain control.



rldesign Root-locus design PD Proportional-derivative (PD) controller design p. 1

–20 –15 –10 –5 5

–20

–10

10

20

Figure PD.3: root locus without compensation.

K1 = 240;
G_P = feedback(K1*G,1);

Derivative compensation

Now, we use cascade derivative compensation

with compensator

K2(s – zc). (15)

For now, we set K2 = 1. From Equation 4, we

compute the compensator zero

zc = Re(ψ) –
∣∣Im(ψ)∣∣/ tan θc and θc = π – ∠G(ψ).

theta_c = pi - angle(evalfr(G,psi));
z_c = real(psi) - abs(imag(psi))/tan(theta_c);
disp(sprintf('theta_c = %0.3g deg',rad2deg(theta_c)))
disp(sprintf('z_c = %0.3g',z_c))

theta_c = 67.1 deg
z_c = -8.5

Let’s construct the compensator sans tuned

gain K2 and tune it up using another root locus.



rldesign Root-locus design PD Proportional-derivative (PD) controller design p. 1

–20 –15 –10 –5 5

–20

–10

10

20

Figure PD.4: root locus with compensation.

C_sans = zpk(z_c,[],1);
figure
rlocus(K1*C_sans*G)

The resulting root locus of Figure PD.4

intersects ψ! (I mean, we knew it would, but we

had our doubts.) The corresponding gain is, from

Equation 2 (or we could use the data cursor),

K2 =
1∣∣(ψ – zc)G(ψ)∣∣ . (16)

Let’s compute it, the controller CPD , and the

closed-loop transfer function GPD.

K2 = 1/abs(evalfr(K1*C_sans*G,psi));
C = K1*K2*C_sans;
G_PD = feedback(C*G,1);

Simulate

Our placement of the ψ depended on the

second-order approximation’s accuracy, which in

this case is questionable, due to the proximity

of a third closed-loop pole. In any case, we

simulate the step response to test the efficacy



rldesign Root-locus design PD Proportional-derivative (PD) controller design p. 2

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

time (s)

st
e
p
re
sp
o
ns
e

P control

PD control

Figure PD.5: step responses for proportional and
proportional­derivative controllers.

of the PD controller design and to compare it

with the P controller.

t_a = linspace(0,2.5,200); % s ... sim time
y_P = step(G_P,t_a); % P controlled step response
y_PD = step(G_PD,t_a); % PD controlled step response

figure
plot(t_a,y_P);
hold on;
plot(t_a,y_PD);
xlabel('time (s)');
ylabel('step response');
grid on
legend('P control','PD control','location','southeast');

The responses, shown in Figure PLag.3, suggest the

PD controller is at least close to meeting the

transient specifications. It is a happy accident

that the steady-state error also improved;

derivative compensation does not always do

this. Let’s use stepinfo to compute more



rldesign Root-locus design PLead Proportional-derivative (PD) controller design p. 3

accurate transient response characteristics of

the PD-controlled system.

si_PD = stepinfo(y_PD,t_a);
disp(sprintf('settling time: %0.3g',si_PD.SettlingTime))
disp(sprintf('percent overshoot: %0.3g',si_PD.Overshoot))

settling time: 0.82
percent overshoot: 16.2

This is quite close to the specification. If

desired, the gain K2 and the zero location zc

could be tuned, iteratively.


