rldesign Root-Locus design

PLeLo Proportional-lead-lag controller design p.1

rldesignPLela Proportional-lead-lag controller design

Proportional-lead-lag controller design is
much Like PID controller design, but the
resulting controller does not require active
compensation. With our technigues of cascade
compensagion Sor lead and lag compensators,
one can simply apply both Lead and lag
compensagion in the usual manner. The order o§
applicaion can be somewhat important becouse
lead compensation can impact steady-state

error. A way to proceed is as jollows.

1. Design o P controller and evaluate its
transient response per§ormance.

2. Apply lead compensation to improve the
transient response. Simulate to verify the
transient response per§ormance.

3. Apply lag compensation to improve the
steady-state error perjormance.

4. Check all per§ormance criteria and
ad just gains and zero Locations,

as-needed.

A design example
Let a system have plant transjer Sunction

200
s3+ 2952 +170s - 200°

Design a P-lead-lag controller such that the
closed-loop overshoot is less than 20%, settling
time is Less than 0.7 seconds, and the
steady-state error is less than 3%.

Determining v

We use Matlab Sor the design.'C First, we must
determine what the specified transient response

criteria tmply Sor the locations of our

10. See ricopic.one/control/source/plaglead_controller_design_exarmplem
Sor the source.

http://ricopic.one/control/source/plead_controller_design_example.m

rldesign Root-locus design PLeLa Proportional-lead-lag controller design p.1

closed.-loop poles. Let one of these desired
pole Locations be called 1. The transient

response perjormance criteria are as jollows.

Ts = .7; 7 sec ... spec settling time
0S = 20; 7 percent ... spec overshoot
sse = .03; 7 fraction of 1

The second.-order approximagion §rom

Chapter trans tells us that the overshoot
requirement implies o speci§ic damping rato ¢,
or, equivalently, /:

/P = - arccos (.

Ad.ditionally, the settling time requirement
implies o speci§ic Re(P) via

Tg = -4/Relip).

zeta = -1log(08/100)/sqrt (pi~2+(log(0S/100))72);
psi_angle = pi - acos(zeta);

psi_re = -4/Ts;

psi_im = psi_rextan(psi_angle);

psi = psi_re + j*psi_im;

disp(sprintf('psi = %0.3g + j %0.3g',real(psi),imag(ps{i)))

|psi= -5.71 + j 11.2

P control

We design a proportional controller that gets
us as close as possible to . The root Locus is
shown in Figure PLelLa .l

rldesign Root-Locus design

PLeLo Proportional-lead-lag controller design p.1

Figure PLela.l: root locus without compensation.

G = tf([200],[1,29,170,-200]);
figure

rlocus(G)

Although we cannot get close to P on the root

locus, we can at least meet our 409
specification by choosing a. gain o5 about

Ky = 5.

Let’s construct the compensator and

corresponding closed.-loop transfer Sunction Cp

Sor gain control.

K_1 = 5;
G_P = feedback(K_1*G,1);

Lead compensaton

Now, we use cascade Lead compensation with
compensator
S-Zg
Ky——2.
Ts- Pld
For now, we set K5 = 1. Let's also set,
arbitrarily, p.d = -30. From £4. Sb, we compute

rldesign Root-Locus design PLeLo Proportional-lead-lag controller design p.2

the compensator zero

0c =7~ ZGp) and zc =Relp) - [Im(p)]/ tan(Bc + L0 - p,).

p_1d = -30;
theta_ld = pi - angle(evalfr(G,psi));
theta_p_1d = angle(psi-p_1d);
z_1ld = real(psi) - abs(imag(psi))/tan(theta_ld + theta _p_1d);
disp(sprintf('theta_ld = 70.3g deg',rad2deg(theta_c)))
disp(sprintf(...
'pole phase contribution = %0.3g deg',...
rad2deg(theta_p_c) ...
»
disp(sprintf('z_1d = %0.3g',z_1d))

| theta_ld = 48 deg
‘pole phase contribution = 24.7 deg
|z_1d = -9.19

By construction, 1 is on the root locus, so we
can §ind Ky directly Srom £4. 2.

C_sans = zpk(z_1d,p_1d,1); /7 without gain
K_2 = 1/abs(evalfr(K_1+C_sans*G,psi));
C_1d = K_1#K_2*C_sans;

disp(sprintf('K_2 = %0.3g',K_2))

K_2 = 6.45

Let’s compute the closed.-loop controller C g,
and the closed.-loop trans§er Sunction G .q4.

rldesign Root-Locus design

PLeLo Proportional-lead-lag controller design p.1

G_Plead = feedback(C_1d*G,1);

Lag compensation

Now, we use cascade lag compensation with
compensator
S-Z,
Ky——2.
5- Pig

For now, we set Ky = 1.

The steady-state error Sor the lead

compensated system is given by the Sollowing.

Kp_1d = evalfr(C_1d*G,0);
ess_1d = 1/(1+Kp_1d);
disp(sprintf('steady-state error = %0.3g',ess_1d))

steady-state error = -0.113

The negative value implies the output is larger
than the input. Reducing this to the given
requirement implies an approximate ragio of
compensator zero to pole «, as jollows.

alpha = abs(ess_1d)/sse

‘alpha

\ 3.7533

rldesign Root-Locus design

PLeLo Proportional-lead-lag controller design p.1

1§ we begin, somewhat arbitrarily, with pg and
Z|g = Xplg: Let’s construct the compensator and
closed.-loop trans§er junction Gpy | .

p_lg = -.1;
z_lg = alpha*p_lg;

C_sans = zpk(z_lg,p_lg,1);
G_PLL = feedback(C_sans*C_1d*G,1);

Simulate

Our placement of the P depended on the
second.-order approximation's accuracy. In any
case, we simulate the step response to test the
eSficacy of the P-lead and P-lead-lag
controller designs and compare them with the P

controller.
t_a = linspace(0,2.5,200); % s ... sim time
y_P = step(G_P,t_a); / P controlled step response

y_Plead = step(G_Plead,t_a); / P-lead step resp.

y_PLL = step(G_PLL,t_a); / P-lead-lag step resp.

figure

plot(t_a,y_P);hold on;

plot(t_a,y_Plead);

plot(t_a,y_PLL);

xlabel('time (s)');

ylabel('step response');

grid on

legend(. ..
'P control','P-lead','P-lead-lag’,...
'location', 'southeast'...

);

The responses, shown in Figure PLela., suggest

rldesign Root-Locus design

PLeLa Proportional-lead-lag controller design p.2

15 T T T

time (s)

8 _—
< B
0
a.
3
[
5}
3 ——P control |+
@ ——P-lead
P-lead.-lag
| | I
1 15 2 2D

Figure PLela.d: step responses Sor proportional,
proportional-lead, and proportional-lead-lag

controllers.

the lead and lead-lag compensated controllers

nearly meet the transient requirements. Let's
use stepinfo to compute more accurate
transient response characteristics Sor the
di§erent controllers.

disp('P control')
si_P = stepinfo(y_P,t_a);
disp(sprintf('settling time: %0.3g',si_P.SettlingTime)
disp(sprintf('percent overshoot: %0.3g\n',si_P.0versho
si_Plead = stepinfo(y_Plead,t_a);
disp('P-lead control')
disp(sprintf(...
'settling time: %0.3g',si_Plead.SettlingTime ...
)
disp(sprintf (...
'percent overshoot: %0.3g\n',si_Plead.0Overshoot...
)
si_PLL = stepinfo(y_PLL,t_a);
disp('P-lead-lag control')
disp(sprintf (...
'settling time: %0.3g',si_PLL.SettlingTime ...
))
disp(sprintf(...
'percent overshoot: %0.3g\n',si_PLL.Overshoot...
)

D
ot))

rldesign Root-Locus design

multd Proportional-lead-lag controller design p.3

P control
settling time: 1.41

percent overshoot: 16

P-lead control
settling time: 0.689

percent overshoot: 17.2

P-lead-lag control
settling time: 1.57

percent overshoot: 25.1

The stepinfo results are not very precise jor
the P-lead-lag controller due to the slow
steady-state compensation, which isn't
completely §Sinished by the end of the simulation.
Ad. justing compensator zeros and poles may
tmprove things, but o trade-of§ emerges between
overshoot and steady-state compensation:
speeding up the latter increases the overshoot
rather sharply.

The steady-state requirement can be checked
analytically.

Kp_PLL = evalfr(C_sans*C_1d*G,0);
ess_PLL = 1/(1+Kp_PLL);
disp(sprintf('steady-state error = %0.3g',ess_PLL))

steady-state error = -0.0277

This is less than 3%, per the requirement;
however, the compensation does take a relatively
long time to approoch this small error.

