
rldesign Root-locus design PLeLa Proportional-lead-lag controller design p. 1

10. See ricopic.one/control/source/plaglead_controller_design_example.m

for the source.

rldesign.PLeLa Proportional-lead-lag controller design

Proportional-lead-lag controller design is

much like PID controller design, but the

resulting controller does not require active

compensation. With our techniques of cascade

compensation for lead and lag compensators,

one can simply apply both lead and lag

compensation in the usual manner. The order of

application can be somewhat important because

lead compensation can impact steady-state

error. A way to proceed is as follows.

1. Design a P controller and evaluate its

transient response performance.

2. Apply lead compensation to improve the

transient response. Simulate to verify the

transient response performance.

3. Apply lag compensation to improve the

steady-state error performance.

4. Check all performance criteria and

adjust gains and zero locations,

as-needed.

A design example

Let a system have plant transfer function

200

s3 + 29s2 + 170s – 200
. (1)

Design a P-lead-lag controller such that the

closed-loop overshoot is less than 20%, settling

time is less than 0.7 seconds, and the

steady-state error is less than 3%.

Determining ψ

We use Matlab for the design.10 First, we must

determine what the specified transient response

criteria imply for the locations of our

http://ricopic.one/control/source/plead_controller_design_example.m


rldesign Root-locus design PLeLa Proportional-lead-lag controller design p. 1

closed-loop poles. Let one of these desired

pole locations be called ψ. The transient

response performance criteria are as follows.

Ts = .7; % sec ... spec settling time
OS = 20; % percent ... spec overshoot
sse = .03; % fraction of 1

The second-order approximation from

Chapter trans tells us that the overshoot

requirement implies a specific damping ratio ζ,

or, equivalently, ∠ψ:

∠ψ = π – arccos ζ. (2)

Additionally, the settling time requirement

implies a specific Re(ψ) via

TS = –4/ Re(ψ). (3)

zeta = -log(OS/100)/sqrt(pi^2+(log(OS/100))^2);
psi_angle = pi - acos(zeta);
psi_re = -4/Ts;
psi_im = psi_re*tan(psi_angle);
psi = psi_re + j*psi_im;
disp(sprintf('psi = %0.3g + j %0.3g',real(psi),imag(psi)))

psi = -5.71 + j 11.2

P control

We design a proportional controller that gets

us as close as possible to ψ. The root locus is

shown in Figure PLeLa.1.



rldesign Root-locus design PLeLa Proportional-lead-lag controller design p. 1

–40 –30 –20 –10

–20

–10

10

20

Figure PLeLa.1: root locus without compensation.

G = tf([200],[1,29,170,-200]);
figure
rlocus(G)

Although we cannot get close to ψ on the root

locus, we can at least meet our %OS

specification by choosing a gain of about

K1 = 5. (4)

Let’s construct the compensator and

corresponding closed-loop transfer function GP
for gain control.

K_1 = 5;
G_P = feedback(K_1*G,1);

Lead compensation

Now, we use cascade lead compensation with

compensator

K2
s – zld

s – pld
. (5)

For now, we set K2 = 1. Let’s also set,

arbitrarily, pld = –30. From Eq. 5b, we compute



rldesign Root-locus design PLeLa Proportional-lead-lag controller design p. 2

the compensator zero

θc = π – ∠G(ψ) and zc = Re(ψ) –
∣∣Im(ψ)∣∣/ tan(θc + ∠(ψ – pc)).

p_ld = -30;
theta_ld = pi - angle(evalfr(G,psi));
theta_p_ld = angle(psi-p_ld);
z_ld = real(psi) - abs(imag(psi))/tan(theta_ld + theta_p_ld);
disp(sprintf('theta_ld = %0.3g deg',rad2deg(theta_c)))
disp(sprintf(...

'pole phase contribution = %0.3g deg',...
rad2deg(theta_p_c)...

))
disp(sprintf('z_ld = %0.3g',z_ld))

theta_ld = 48 deg
pole phase contribution = 24.7 deg
z_ld = -9.19

By construction, ψ is on the root locus, so we

can find K2 directly from Eq. 2.

C_sans = zpk(z_ld,p_ld,1); % without gain
K_2 = 1/abs(evalfr(K_1*C_sans*G,psi));
C_ld = K_1*K_2*C_sans;
disp(sprintf('K_2 = %0.3g',K_2))

K_2 = 6.45

Let’s compute the closed-loop controller Clead ,

and the closed-loop transfer function Glead.



rldesign Root-locus design PLeLa Proportional-lead-lag controller design p. 1

G_Plead = feedback(C_ld*G,1);

Lag compensation

Now, we use cascade lag compensation with

compensator

K3
s – zlg

s – plg
. (6)

For now, we set K3 = 1.

The steady-state error for the lead

compensated system is given by the following.

Kp_ld = evalfr(C_ld*G,0);
ess_ld = 1/(1+Kp_ld);
disp(sprintf('steady-state error = %0.3g',ess_ld))

steady-state error = -0.113

The negative value implies the output is larger

than the input. Reducing this to the given

requirement implies an approximate ratio of

compensator zero to pole α, as follows.

alpha = abs(ess_ld)/sse

alpha =

3.7533



rldesign Root-locus design PLeLa Proportional-lead-lag controller design p. 1

If we begin, somewhat arbitrarily, with plg and

zlg = αplg. Let’s construct the compensator and

closed-loop transfer function GPLL.

p_lg = -.1;
z_lg = alpha*p_lg;
C_sans = zpk(z_lg,p_lg,1);
G_PLL = feedback(C_sans*C_ld*G,1);

Simulate

Our placement of the ψ depended on the

second-order approximation’s accuracy. In any

case, we simulate the step response to test the

efficacy of the P-lead and P-lead-lag

controller designs and compare them with the P

controller.

t_a = linspace(0,2.5,200); % s ... sim time
y_P = step(G_P,t_a); % P controlled step response
y_Plead = step(G_Plead,t_a); % P-lead step resp.
y_PLL = step(G_PLL,t_a); % P-lead-lag step resp.

figure
plot(t_a,y_P);hold on;
plot(t_a,y_Plead);
plot(t_a,y_PLL);
xlabel('time (s)');
ylabel('step response');
grid on
legend(...

'P control','P-lead','P-lead-lag',...
'location','southeast'...

);

The responses, shown in Figure PLeLa.2, suggest



rldesign Root-locus design PLeLa Proportional-lead-lag controller design p. 2

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

time (s)

st
e
p
re
sp
o
ns
e

P control

P-lead

P-lead-lag

Figure PLeLa.2: step responses for proportional,
proportional-lead, and proportional-lead-lag
controllers.

the lead and lead-lag compensated controllers

nearly meet the transient requirements. Let’s

use stepinfo to compute more accurate

transient response characteristics for the

different controllers.

disp('P control')
si_P = stepinfo(y_P,t_a);
disp(sprintf('settling time: %0.3g',si_P.SettlingTime))
disp(sprintf('percent overshoot: %0.3g\n',si_P.Overshoot))
si_Plead = stepinfo(y_Plead,t_a);
disp('P-lead control')
disp(sprintf(...

'settling time: %0.3g',si_Plead.SettlingTime ...
))
disp(sprintf(...

'percent overshoot: %0.3g\n',si_Plead.Overshoot...
))
si_PLL = stepinfo(y_PLL,t_a);
disp('P-lead-lag control')
disp(sprintf(...

'settling time: %0.3g',si_PLL.SettlingTime ...
))
disp(sprintf(...

'percent overshoot: %0.3g\n',si_PLL.Overshoot...
))



rldesign Root-locus design multd Proportional-lead-lag controller design p. 3

P control
settling time: 1.41
percent overshoot: 16

P-lead control
settling time: 0.689
percent overshoot: 17.2

P-lead-lag control
settling time: 1.57
percent overshoot: 25.1

The stepinfo results are not very precise for

the P-lead-lag controller due to the slow

steady-state compensation, which isn’t

completely finished by the end of the simulation.

Adjusting compensator zeros and poles may

improve things, but a trade-off emerges between

overshoot and steady-state compensation:

speeding up the latter increases the overshoot

rather sharply.

The steady-state requirement can be checked

analytically.

Kp_PLL = evalfr(C_sans*C_ld*G,0);
ess_PLL = 1/(1+Kp_PLL);
disp(sprintf('steady-state error = %0.3g',ess_PLL))

steady-state error = -0.0277

This is less than 3%, per the requirement;

however, the compensation does take a relatively

long time to approach this small error.


