rldesign.multd Multiple derivative compensators

Lec. rldesign.PD shows how to design a derivative compensator such that the compensated root locus of a control system can be made to include some test point $\psi \in \mathbb{C}$ where the designer would like a closed-loop pole (typically to satisfy transient response requirements). This derivative compensator has the form

$$C_{\rm D} = \mathsf{K}(\mathsf{s} - \mathbf{z}_{\mathsf{c}}), \tag{1}$$

for gain $K \in \mathbb{R}$ and zero $z_c \in \mathbb{R}$. The crux of the design procedure is to compute via the root locus phase criterion¹¹ the **required** compensator phase contribution:

$$\Theta_{c} = \pi - \angle GH(\psi)$$
(2)

for open-loop transfer function GH(s). A trigonometric analysis shows that, for $\theta_c \in [-\pi, \pi]$, the compensator zero must be

$$\mathbf{z}_{c} = \operatorname{Re}(\psi) - \operatorname{Im}(\psi) / \tan \theta_{c}.$$
 (3)

The obvious limitation here is that if the required compensation θ_c is beyond $\pm \pi$, the derivative compensator of Eq. 1 cannot contribute sufficient phase. The strategy we adopt here is to augment the derivative compensator to include as many (equal) zeros as we need:

$$C_{m} = K(s - \mathbb{Z}_{m})^{m}, \qquad (4)$$

where z_m is a zero of multiplicity m. We call this a multiple derivative compensator or m-derivative compensator.

How do we select the compensator zero z_m and multiplicity m for a given θ_c ? First, we

11. The phase criterion was defined in Lec. rlocus.def, Eq. 6.

multiple derivative compensator

Algorithm multd.1 t	ihe multi	.ple derivative
compensator algorithm		
function d_comp_m(4	, GH(s))	
$ heta_{c} \leftarrow \pi$ - $\angle GH(\psi)$	⊳ requir	ed phase comp
$m \leftarrow ceil_{ing}(\Theta_c/\pi)$	[> zeros needed
$\theta_{\text{m}} \gets \theta_{\text{c}}/\text{m}$	> divide	contributions
$oldsymbol{z}_{m} \gets Re(\psi)$ - Im (ψ)	/tanθ _m	⊳ trig
$C'_m \leftarrow (s - \mathbf{z}_m)^m$	\triangleright (comp <mark>sans</mark> g <mark>ai</mark> n
$K_m \leftarrow \left C'_m(\psi)GH(\psi)\right $	-1 D A	ngle criterion
$C_m \leftarrow K_m C'_m$	\triangleright (comp with gain
return C _m		
end function		

determine m by determining how many π (or $-\pi$) contributions are required:^{12,13}

$$m = \left\lceil \frac{|\theta_{c}|}{\pi} \right\rceil.$$
(5)

With this, we can divide-up the the required phase contribution θ_c among the m zeros:

$$\theta_{\rm m} = \theta_{\rm c}/{\rm m}.$$
 (6)

By construction, $\theta_m \in [-\pi, \pi]$, so the compensator zeros should be located at

$$\mathbf{z}_{m} = \operatorname{Re}(\psi) - \operatorname{Im}(\psi) / \tan \theta_{m}. \tag{7}$$

This is summarized in Algorithm multd.1.

Causality

A complication can arise when derivative compensation yields a closed-loop transfer function with more zeros than poles-a type of system called **non-causal** (non-non-causal systems are called **causal**). Non-causal systems are those that depend on **future** states, something classically¹⁴ impossible to instantiate in real-time, and therefore a controller that creates such a control system is of no practical use.¹⁵ Adding multiple zeros to a controller can easily yield such undesirable systems.

To mitigate this, we can include i pure integrators 1/s into the compensator. They will obviously affect the root locus, so their effects must be taken into account during the zero compensator calculations. This is done by treating the open-loop transfer function as if it already had the compensator integrators 1/sⁱ. Algorithm multd.2 summarizes this approach. 12. The function $\lceil \cdot \rceil$ is called the ceiling function and rounds up to the nearest integer.

13. Note that if $\theta_c\in [-\pi,\pi]$, the multiplicity m = 1 and the compensator is a regular derivative compensator.

non-causal

causal

14. It gets complicated when considering relativity and quantum mechanics, which we do not, here.

15. Non-causal system models are useful for digital signal postprocessing, but these are always **a posteriori**-i.e. "future" time is known because it is in the analytic past. Controllers do not have this luxury.

Algorithm	multd.2	the	multiple	derivative
compensator algorithm with ι integrators.				

function d_comp_m(ψ, GH(s), ι)				
▷ required phase comp				
> zeros needed				
> divide contributions				
$tan \theta_m$ > trig				
⊳ comp sans gain				
> angle criterion				
▷ comp with gain				