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Figure nyquist.1: contour ΓN to be mapped by transfer
function.
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Introduction

Consider a feedback control system. Let G(s) be

the forward-loop transfer function and let

H(s) be the feedback transfer function. The

Nyquist plot is a parametric plot of the

frequency response function G(jω)H(jω) of the

open-loop transfer function G(s)H(s).

The Nyquist criterion allows us to gain insight

about closed-loop stability from the open-loop

frequency response (Nyquist and Bode plots) and

open-loop pole location. Additionally, insight

into transient response and steady-state error

response characteristics can be determined

from Nyquist plots. In this sense, the Nyquist

plot is analogous to the root-locus plot.

A description of the Nyquist criterion

A rigorous derivation of the Nyquist criterion is

beyond the scope of this work. However, a

motivating description is included. Before we

begin, please review complex functions, as

described in Appendix A.01.

The full Nyquist plot is the mapping of a

contour ΓN that contains the righthalf plane

and is defined as beginning at the origin,

moving vertically along the jωaxis “to

infinity,” encircling the righthalfplane with a

semicircle “to negative infinity,” and returning

vertically to the origin, as shown in

Fig. nyquist.1.
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The Nyquist plot is now defined, but what

remains is describing the Nyquist criterion and

why it works. There are several important

insights required to understand it.

encirclements of the origin give us a clue It

turns out that whenever we map ΓN with a

transfer function F, we find out a

relationship between the number of poles P

inside ΓN , the number of zeros Z inside ΓN ,

and the number of counterclockwise

encirclements N of the origin by the

contour F(ΓN). The primary insight is that

when a pole or zero is encircled by ΓN , it

contributes an entire ±2π in phase

around the contour, whereas when a pole

or zero is not encircled by ΓN , its net

contribution to phase is zero. This yields

the following relationship:

N = P – Z. (1)

the open-loop transfer function mapping is close to what we want

We know the poles and zeros of the

open-loop transfer function G(s)H(s). We

want to know information about the

closed-loop pole locations. The

closed-loop transfer function (without

compensation) is

T(s) =
G(s)

1 + G(s)H(s)
. (2)

Let’s rewrite G(s) and H(s) in terms of

numerators and denominators, as follows:

G(s) =
Gn(s)

Gd(s)
and H(s) =

Hn(s)

Hd(s)
. (3)

Let’s see what our closed-loop transfer

function looks like now:

T(s) =
Gn(s)Hd(s)

Gd(s)Hd(s) + Gn(s)Hn(s)
. (4)
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Finally, let’s consider the denominator

Eq. 2 for a moment:

1 + G(s)H(s) =
Gd(s)Hd(s) + Gn(s)Hn(s)

Gd(s)Hd(s)
, (5)

which, combined with Eq. 3 and Eq. 4,

allows us to see two important

obervations:

1. the poles of 1 + G(s)H(s) equal the

poles of G(s)H(s) and

2. the zeros of 1 + G(s)H(s) equal the

poles of T(s).

We are so close! We know the poles of

G(s)H(s), therefore we know the poles of

1 + G(s)H(s). We want to know the poles of

T(s), which are related to the zeros of

1 + G(s)H(s), which we don’t have, but we

have something related: the open loop

transfer function mapping G(ΓN)H(ΓN).

a sidestep for all the money What if we

just map with the open-loop transfer

function G(ΓN)H(ΓN)? That gives us almost

exactly the same image as 1 + G(ΓN)H(ΓN), but

shifted one unit to the left. This means

that if we plot G(ΓN)H(ΓN) and interpret

it as 1 + G(ΓN)H(ΓN), we can determine

stability of the closed loop transfer

function! Let’s redefine our N-P-Z

relationships for the mapping G(ΓN)H(ΓN).

1. Let N be the number of

counterclockwise encirclements of –1.

2. Let P be the number of open-loop

poles in the righthalf plane.

3. Let Z be the number of closed-loop

poles in the righthalf plane.

If we have a plot of G(ΓN)H(ΓN), we have

the first two and the third is given by

the Nyquist criterion:

Z = P – N. (6)
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We will use this to determine stability in

Lec. freq.nystab. However, even now, we know

that the existence of righthalfplane

closed-loop poles implies closed-loop

instability, so we can already identify that

much. Before exploring stability further, we will

learn to sketch the Nyquist plot. Not because

we don’t have MATLAB, but rather to gain

intuition.

Sketching Nyquist plots

We now begin sketching Nyquist plots. Remember

that we are first-ofall interested in the

number of counterclockwise encirclements of –1,

which will help us determine stability via the

Nyquist criterion. We proceed by example.

Example freq.nyquist1 re: a stable open-loop system

Let an open-loop transfer function be defined

by

G(s)H(s) =
30

(s + 4)(s + 7)
.

Sketch its Nyquist plot and apply the Nyquist

criterion to determine the number of closed-

loop poles in the righthalf plane.

Figure nyquist.2:

Let’s sketch the contour ΓN in Fig. nyquist.2.

So the magnitude and phase of the mapped

contour are

∣∣G(ΓN)H(ΓN)∣∣ = 30

L1L2
and

∠G(ΓN)H(ΓN) = –θ1 – θ2.
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We begin at point A and map the orange

contour, which is the positive jωaxis. At

A, θ1 = θ2 = 0, so ∠G(A)H(A) = 0, and L1 = 4

and L2 = 7, so
∣∣G(A)H(A)∣∣ = 30/28 ≈ 1.07. In

the Fig. nyquist.3, we sketch G(ΓN)H(ΓN) with

point A′ = G(A)H(A).

Figure nyquist.3:

As we move to B on the

orange contour, the angle becomes increasingly

negative and the magnitude decreases. Finally,

at C, the angle approaches –180deg and the

magnitude approaches 0. Note that in the

sketch we don’t go quite to zero because we

want to leave space to represent what occurs

at zero.

What occurs at zero is that the green contour

“at infinity” is mapped. The angle changes

from +180deg to –180deg and the magnitude

stays at 0. We sketch this by showing a 360deg

rotation back to +180deg = –180deg at C′.

This doesn’t always happen. Sometimes the

angle with which the origin is approached

is different than the angle with which it

leaves. In this case, the blue contour exits

at 180deg with increasing amplitude, only to

“mirror” the orange contour’s return to A′.

This does always occur: The Nyquist plot is

always symmetric about the real axis and the

jωaxis image is essentially a mirroring of the

–jωaxis image.

Examining the Nyquist plot sketch, there are no

counterclockwise encirclements of –1, i.e. N = 0.

The open-loop transfer function has no poles in

the righthalfplane, i.e. P = 0. Therefore, from

the Nyquist criterion,
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Z = P – N = 0 – 0 = 0.

So there are no closed-loop in the righthalf-

plane and the closed-loop system is stable.

What if there’s an open-loop pole on the

contour ΓN? The magnitude of the contour

G(ΓN)H(ΓN) becomes infinite, but we cannot

determine at which phase it does so. Therefore,

in these cases we take an infinitesimal detour

around the pole so that we can keep track of

the phase. The magnitude still approaches

infinity, but the phase information is retained.

Let’s consider another example that

illustrates this.

Example freq.nyquist2 re: a system with open-loop poles on the Nyquist

contour

Let an open-loop transfer function be defined

by

G(s)H(s) =
10(s + 1)

s2 + 1
.

Sketch its Nyquist plot and apply the Nyquist

criterion to determine the number of closed-

loop poles in the righthalf plane.

Figure nyquist.4:

Let’s sketch the contour ΓN in Fig. nyquist.4.

So the magnitude and phase of the mapped

contour are
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∣∣G(ΓN)H(ΓN)∣∣ = 10L1L2L3
and

∠G(ΓN)H(ΓN) = θ1 – θ2 – θ3.

We begin at point A and map the orange

contour, which is the positive jωaxis. At

A, θ1 = 0 and θ2 = –θ3 , so ∠G(A)H(A) = 0,

and L1 = L2 = L3 = 1, so
∣∣G(A)H(A)∣∣ = 10. In

Fig. nyquist.5, we sketch G(ΓN)H(ΓN) with point

A′ = G(A)H(A). As we move to B on the orange

contour, θ1 → +45deg and still θ2 = –θ3 ,

so ∠G(A)H(A) → +45deg. But the magnitude

approaches infinity because L2 → 0.

Figure nyquist.5:

The

infinitesimal detour from B to C doesn’t

change the magnitude, but it does change

the phase by –180deg. Finally, from C to D the

only angle that changes is θ1 by +45deg, which

yields ∠G(A)H(A) → –90deg as the magnitude

approaches zero due to the denominator of

the magnitude approaching infinity faster

than the numerator. What occurs at zero is

that the green contour “at infinity” is mapped.

The angle changes from –90deg to +90deg and

the magnitude stays at 0. We sketch this by

showing a 180deg rotation back to +90deg

at C′.The blue contour exits at +90deg with

increasing amplitude, only to “mirror” the

orange contour’s return to A′.

Examining the Nyquist plot sketch, there are no

counterclockwise encirclements of –1, i.e. N = 0.

The open-loop transfer function has no poles in

the righthalfplane, i.e. P = 0. Therefore, from

the Nyquist criterion,

Z = P – N = 0 – 0 = 0.
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So there are no closed-loop in the righthalf-

plane and the closed-loop system is stable.


