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ss.55dbck Controller design meth

We will consider single-input single-output
(SIS0) control plants that can be written with
input u; state vector x; output y; state model
matrices A, B, C, and D; and state and output
egquations

x = Ax +Bu

y=Cx+Du

Plants of this jorm can be written in block
diagram Sorm, as illustrated in Fig. sjdbck.l. In
general, SIS0 systems are 0§ order nwith n
state variables.

Let us consider the §ollowing Seedback control
method called state §eedback control. We
will Seed back the state vector x, operate on it
with a 1 x nvector 0§ gains K € R", and
subtract the result §rom the command r, the
result of which becomes the input u, as shown in
Fig. s5dbck.Q.

The control problem §or state Seedback control
is to determine the n gains in K such that the
closed.-Loop poles are Located in desirable
positions. The gain N € R is provided Sor
steady-state error consideragions, which will be
addressed in Lec. ss.s§dbck. A new state model
can be derived Sor the closed-loop system as
Sollows. Let us consider the command r to be
our new “input,” instead of u, which is now the
control eSfort. From the block diagram,

w = Nr - Kx,

which can be substituted into £q. 1 to def§ine

O
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- |
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A

Figure s§dbck.l: the plant state model of E4. 1 written in

block diagram Sorm.

Figure s§dbck.2:
diagram.

state Jeedback control

the state Seedback control block
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the new state model

x = (A - BK)x + NBr
y = (C-DK)x +NDr.

The eigenvalues 0§ A -BK, which can be Sound
Srom equating Zero and the closed-Loop
characteristic polynomial

Py = det (sI - A +BK),

are equal to the closed.-loop poles, which we
would Like to place in speci§ic Locations. Those
speci§ic Locations can be specified by the
design characteristic polynomial Py. Py
depends on the n gains Ki, and n equations can
be Sound by equating the polynomial
coeSficients of Py and Py.

Solving Sor K; is straightSorward but can be
very tedious in the general case. Let the
coe§yicients 0§ Py be & and those of Py be
denoted k. Then the n x 1 vector containing k;
can be expressed as a linear combination of K¢

Qas

K = KKT,

where X is an n x n matrix o§ coeS§icients that

were derived §rom A and B. Let & be the n x 1
vector of components §;. Since the vector & is
specified by our design requirements, we can
solve Sor K as Sollows.
K =9,
and therefore,
KKT=8 =
KT=%ls —
k= (x"s)".

closed-loop characteristic polynomial

design characteristic polynomial
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£q. 7 is valid Sor all cases in which K is

aner‘tt\ol.e.l However, there is a SP@C'LOJ., SON“\ oﬁ L We leave the jollowing as an open question: under what conditions
. is K invertible?

the original state-space model that always

yields a simple solution Sor K: the

phase-variable canonical jorm (see Phase-variable canontcal jorm

Appendix B.OR).

Solving jor the gain via the phase-variable
canonical jorm

The phase-variable canonical Sorm of the

original system is:

*C = Acxc + Bcu

y=Cexc¢ +Deu

where
(0 1 0 0O 0 | 0]
0 o) 1 o) 0 0
Ac _ . . . . . Bc _ .
0 o) o) 1 0 0
0 o) o .- o) 1 0
a0 a1 Gyt Gpn 0ud| 1]
Ce= -Cl cy - cn] and D¢ = -dl ,

where the components a; are def§ined by the

original characteristic polynomial
P=detsI-A=s"+a, 18" + - +ays+ap

With A¢ deSined, the Sorm of the Seedback
state model with Seedback row vector K¢ is:
Aé = Ac - B(:Kc- Bé = E>c,
C/C = CC - DcKc, Qnd Dé = Dc.

A, deserves urther attention. The special

canonical jorm of Ac and Be makes the
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expression §or AL simply

[ o 1 - o |
0 0 0
/ . . . .
he = 0 0 0
‘(Qo + Ki) ‘(&1 + K{Q) ce ‘(&n,l + K,/,])

where K{ is the row vector of gains in the
phase-variable canonical basis. The design
characteristic polynomial coeS§icients 5 must
egual the characteristic polynomial

coeS§icients
5(_ =0t K{."'l'
which gives
/
Ki =81 - a1

This ytelds K. 1§ we equate the Seedback

kx =K'x, =
k=KT..

Let U and Uc be the controllability matrices
Sor the original basis and the phase-variable
canonical basis, respectively. From

Appendix B.02, we can compute the
transjormation matrix to be

TC = ucuil.

Steady-state error

We can use the gain N to drive the closed.-loop
steady-state error to zero jor step inputs. The
idea is that we can scale the input by the
reciprocal o the closed.-loop steady-state
error. Let G (s) be the closed-loop transSer
Sunction. From the §inal value theorem Sor a
unit step input,

N = Lim 1/GCL(S).

s—0,N—1
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15 N is nonzero and §inite, the response will
have zero steady-state error. Although it is
derived jromunit step inputs, we can apply this
Sormula. to slowly varying inputs as well.

Example ss.s§dbck-1

Given the state-space model

10 1 1
A=|1 1 0 B- |0

0 1 1 0
C:[o 0 1} D:[o],

design a controller with 15% overshoot and a
settling time of 1sec.

re: state Seedback pole placement design
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