2 The Structure, Style, and Design of Programs

Problem Solutions

Problem 2.1 @uQ Write a program in a single script that meets the following
requirements:

a. Itimports the standard library random module.

b. It defines a function rand_sub () that defines a list of grammatical subjects
(e.g., Jim, I, you, skeletons, a tiger, etc.) and returns a random subject; consider
using random. choice () function.

c. It defines a function rand_verb() that defines a list of verbs in past tense
(e.g., opened, smashed, ate, became, etc.) and returns a random verb.

d. It defines a function rand_obj () that defines a list of grammatical objects
(e.g., the closet, her, crumbs, organs) and returns a random object.

e. It defines a function rand_sen() that returns a random subject-verb-object
sentence as a string beginning with a capital letter and ending with a period.

f. Itdefines a function rand_par () that returns a random paragraph as a string
composed of 3 to 5 sentences (the number of sentences should be random—
consider using the random.randint (a, b) function that generates an int
between a and b, inclusively). Sentences should be separated by a space " "
character.

g. Itcalls rand_par () three times and prints the results.

Solution 2.1 VW0 The following program meets the requirements:
import random

def rand_sub():
"""Returns a random grammatical subject"""


https://engineering-computing.ricopic.one/vl
https://engineering-computing.ricopic.one/vl
https://engineering-computing.ricopic.one/wq
https://engineering-computing.ricopic.one/wq

12

def

def

def

def

Chapter 2

subjects = [
"I", "you", "Jim", "Helen", "Socrates", "skeletons",
"a stick", "the undead", "Bilbo", "the youth",
"all the children", "a unicorn", "several snakes",
"Taylor Swift", "Hamlet", "an unkindness of ravens",
"huge rats", "Kant", "Beauvoir", "they",
"the rest of them", "he", "she", "Pam", "a bunch",

]

return random.choice(subjects)

rand_verb():
"""Returns a random verb"""

verbs = [
"opened", "smashed", "ate", "became", "climbed",
"chose", "questioned", "grew", "squeezed", "read",

"sought", "lifted", "outpaced", "surprised",
"sauteed", "dissected", "displayed", "coughed up",
"stole", "got rid of", "dispatched", "clung to",

]

return random.choice(verbs)

rand_obj():

"""Returns a random grammatical object"""
objects = [

"the closet", "her", "crumbs", "organs", "cheese",
"the best ones", "a hippo", "the lot of them",
"those assembled", "him", "platters", "the whiskey",
"jumbo shrimp", "the strangest one", "the wind",
"spoons galore", "a book", "a mirror", "a blessed spirit",
"a path most perilous", "most", "a hungry caterpillar",

]

return random.choice(objects)

rand_sen():
"""Returns a random subject-verb-object sentence"""
s = rand_sub()

v = rand_verb()
o = rand_obj()
sentence = " ".join([s.capitalize(), v, o]) + "."

return sentence

rand_par():
"""Returns a paragraph of random sentences
n_sentences = random.randint(3, 5)
paragraph = ""
for i in range(0, n_sentences):

paragraph += " " + rand_sen()

nun



The Structure, Style, and Design of Programs 13

return paragraph

for i in range(0,3):
print (rand_par())

This program prints the following to the console:

He became a hippo. Helen chose the best ones. Taylor swift became the
— closet. A unicorn displayed cheese.

A unicorn dispatched the best ones. A stick got rid of the whiskey.
— Pam got rid of organs. A bunch opened her. An unkindness of

— ravens dispatched crumbs.

The rest of them chose a blessed spirit. The undead climbed the best
— ones. The undead dissected cheese.

Problem 2.2 @sk Rewrite the program from problem 2.1 such that it meets the
following requirements:

a. Itdefines the functions in a separate module with the file name rand_speech

_parts.py.
b. Instead of defining the lists of subjects, verbs, and objects inside the functions,

itassigns a variable to each list in the module’s global namespace and accesses
them from within the functions. Why is this preferable?

c. Itimports the module into the main script.

d. It print three random paragraphs, as before.

Solution 2.2 ¥sk The following program meets the requirements. First, the
module rand_speech_parts. py contains the following:

import random

subjects = [
"I", "you", "Jim", "Helen", "Socrates", "skeletons",
"a stick", "the undead", "Bilbo", "the youth",
"all the children", "a unicorn", "several snakes",
"Taylor Swift", "Hamlet", "an unkindness of ravens",
"huge rats", "Kant", "Beauvoir", "they",
"the rest of them", "he", "she", "Pam", "a bunch",

]

verbs = [
"opened", "smashed", "ate", "became", "climbed",
"chose", "questioned", "grew", "squeezed", "read",
"sought", "lifted", "outpaced", "surprised",
"sauteed", "dissected", "displayed", "coughed up",
"stole", "got rid of", "dispatched", "clung to",



https://engineering-computing.ricopic.one/sk
https://engineering-computing.ricopic.one/sk

14

def

def

def

def

def

objects = [

"the closet", "her", "crumbs", "organs", '"cheese",

"the best ones", "a hippo", "the lot of them",

"those assembled", "him", "platters", "the whiskey",
"jumbo shrimp", "the strangest one", "the wind",

"spoons galore", "a book", "a mirror", "a blessed spirit",
"a path most perilous", "most", "a hungry caterpillar",

rand_sub():
"""Returns a random grammatical subject"""
return random.choice(subjects)

rand_verb():
"""Returns a random verb"""
return random.choice(verbs)

rand_obj():
"""Returns a random grammatical object"""
return random.choice(objects)

rand_sen():

"""Returns a random subject-verb-object sentence"""
s = rand_sub()

v = rand_verb()

o rand_obj ()

sentence = " ".join([s.capitalize(), v, o]) + "."
return sentence

rand_par():
"""Returns a paragraph of random sentences"""
n_sentences = random.randint(3, 5)
paragraph = ""
for i in range(0, n_sentences):
paragraph += " " + rand_sen()
return paragraph

Chapter 2

It is better to move the lists of words outside the functions’ local namespaces and
into the module’s global namespace because the functions’ namespaces those are
created and then destroyed at each function call. It is more efficient to define the
lists once and access them within the functions (the scope of each list variable being
inclusive of the function blocks).

The main script contains the following;:

| import rand_speech_parts



The Structure, Style, and Design of Programs 15

| for i in range(0,3):

print (rand_speech_parts.rand_par())

Running the main script prints the following to the console:

Helen displayed a hippo. Bilbo sauteed crumbs. A unicorn climbed

— crumbs.

A1l the children clung to a blessed spirit. An unkindness of ravens
— sought the strangest one. Pam squeezed those assembled. Bilbo
— climbed her. Pam stole the best omes.

Taylor swift grew a hungry caterpillar. A bunch clung to platters.
— Hamlet clung to platters. You dispatched the best ones.

Problem 2.3 @vE Write a program in a single script that meets the following
requirements:

a.
b.

It imports the standard library random module.

It defines a function rand_step(x, d, ymax, wrap=True) that returns
a float that is the sum of x and a uniformly distributed random float
between -d and d. Consider using the random.uniform(a, b) function that
returns a random float between a and b. If wrap is True, it maps a stepped
value y > ymax toy - ymax and a stepped value y < O to ymax + y.If
wrap is False, it maps a stepped value y > ymax to ymax and a stepped
valuey < 0toO.

It defines a function rand_steps(x0, d, ymax, n, wrap=True) that
returns a list of n floats that are sequentially stepped from x0. It passes
wrap to its call to rand_step().

It defines a function print_slider(k, x) that prints k characters, all of
which are - except that which has index closest to x, for which it prints .
For instance, print_slider (17, 6.8) should print

Consider using the built-in round () function.
It defines a function rand_sliders(n, k, x0=None, d=3, wrap=True)
that prints n random sliders of k characters and max step d starting at the
index closest to x0, if provided, and otherwise at the index closest k/2.
It prints 25 random wrapped sliders of 44 characters with the default step
range and starting point 2.
It prints 20 random nonwrapped sliders of 44 characters with the step range
5 and starting point 42.

Solution 2.3 WYE The following program meets the requirements:


https://engineering-computing.ricopic.one/ye
https://engineering-computing.ricopic.one/ye

16 Chapter 2

import random

def rand_step(x, d, ymax, wrap=True):
"""Returns the sum of x and a random float between -d and 4d"""
step = random.uniform(-d, d)
y = x + step
if wrap:
if y > ymax:
y =Y - ymax
elif y < 0:
y = ymax +y
else:
if y > ymax:
y = ymax
elif y < 0O:
y =20
return y

def rand_steps(x0, d, ymax, n, wrap=True):
"""Returns a list of n floats sequentially stepped from xO"""
values = [x0]
for i in range(O,n):
values.append(
rand_step(values[-1], d, ymax, wrap=wrap)
)

return values

def print_slider(k, x):
"""Prints k '-' characters except for that with index
closest to x, which prints |
nnn
x_rounded = round(x)
if x_rounded < O:

x_rounded = 0O # Coerce to O
elif x_rounded > k:
x_rounded = k - 1 # Coerce to max index
for i in range(0,k):
if i == x_rounded:
print("|", end="")
else:

print("-" s end:n u)
print("") # Line break applied

def rand_sliders(n, k, x0=None, d=3, wrap=True):
"""Prints n random sliders with k characters"""
if not x0:
x0 = k/2 # Start in the middle




The Structure, Style, and Design of Programs

values = rand_steps(

x0, # Initial value

d, # Max step size

ymax=k-1, # Subtract 1 because O-indexed
n=n, # One value per slider

wrap=wrap # Pass wrap

for x in values:
print_slider(k, x)

print("rand_sliders(25, 44, x0=2, wrap=True):")
rand_sliders(25, 44, x0=2, wrap=True)

rand_sliders(20, 44, x0=42, d=5, wrap=False)

This program prints the following to the console:

rand_sliders(25, 44, x0=2, wrap=True):

print("rand_sliders(20, 44, x0=42, d=5, wrap=False):")

17



18 Chapter 2

Problem 2.4 3G Rewrite the program from problem 2.3 such that it meets the
following requirements:

a. It defines the functions in a separate module with the file name rand
_sliding.py.

b. Itimports the module into the main script.

c. It prints 25 random wrapped sliders of 44 characters with the default step
range and starting point 42.

d. It prints 20 random nonwrapped sliders of 44 characters with the step range
5 and starting point 2.

Solution 2.4 3¢ The following program meets the requirements. First, the
module rand_sliding.py contains the following:

import random

def rand_step(x, d, ymax, wrap=True):
"""Returns the sum of x and a random float between -d and 4"""
step = random.uniform(-d, d)
y = x + step

if wrap:
if y > ymax:
y =y - oymax
elif y < O:
y = ymax +y
else:

if y > ymax:


https://engineering-computing.ricopic.one/8g
https://engineering-computing.ricopic.one/8g

The Structure, Style, and Design of Programs

y = ymax
elif y < O:
y =20
return y

def rand_steps(x0, d, ymax, n, wrap=True):
"""Returns a list of n floats sequentially stepped from xO"""
values = [x0]
for i in range(0,n):
values.append(
rand_step(values[-1], d, ymax, wrap=wrap)
)

return values

def print_slider(k, x):
"""Prints k '-' characters except for that with index
closest to x, which prints |
nnn
x_rounded = round(x)
if x_rounded < O:

x_rounded = 0O # Coerce to O
elif x_rounded > k:
x_rounded = k - 1 # Coerce to max index
for i in range(0,k):
if i == x_rounded:
print("|", end="")
else:

print("—" s end=" n)
print("") # Line break applied

def rand_sliders(n, k, x0=None, d=3, wrap=True):
"""Prints n random sliders with k characters"""
if not x0:
x0 = k/2 # Start in the middle
values = rand_steps(

x0, # Initial value

d, # Max step size

ymax=k-1, # Subtract 1 because O-indexed
n=n, # One value per slider

wrap=wrap # Pass wrap
)
for x in values:
print_slider(k, x)

The main script contains the following;:

import rand_sliding

19



20 Chapter 2

|print(”rand_sliding.rand_sliders(25, 44, x0=42, wrap=True):")
|rand_sliding.rand_sliders(25, 44, x0=42, wrap=True)
|print("rand_sliding.rand_sliders(QO, 44, x0=2, d=5, wrap=False):")
|rand_sliding.rand_sliders(QO, 44, x0=2, d=5, wrap=False)

Running the main script prints the following to the console:

rand_sliding.rand_sliders(25, 44, x0=42, wrap=True):



The Structure, Style, and Design of Programs

21



