
The Structure, Style, and Design of Programs 23

[4, 2, 6, 1, 9],
[3.0, -1.0, 10.0, -33.0],
[1, 2, 3, 4, 5, 3],
[5, 4, 3, 2, 1, 0],

]

for test_list in test_lists:
print(f"Sorted {test_list} into {bubble_sort(test_list)}")

This program prints the following to the console:

Early return! Had 2 passes left.
Sorted [4, 2, 6, 1, 9] into [1, 2, 4, 6, 9]
Sorted [3.0, -1.0, 10.0, -33.0] into [-33.0, -1.0, 3.0, 10.0]
Early return! Had 4 passes left.
Sorted [1, 2, 3, 4, 5, 3] into [1, 2, 3, 3, 4, 5]
Sorted [5, 4, 3, 2, 1, 0] into [0, 1, 2, 3, 4, 5]

The lists are properly sorted. Note that in two cases the early return has occurred,
as we can see by the early return messages. This demonstrates that more passes
would have been performed without the early return logic.

Problem 2.6 LINKYS Preprogramming work: In this problem, before writing the pro-
gram specified, (1) draw a functional design method diagram (see ??) and (2) write
a pseudocode for each function (see ??).
Restrictions: In this problem, most of the functions you will write already exist

in the standard libary module statistics. You may not use this module for this
problem, but you may use others, such as the math module. You may also use list
methods such as sort(). Furthermore, you may not use any external packages.
Programming: Write a program in a single script that meets the following

requirements:

a. It defines a function stats(x: list) -> dict that computes the following
basic statistics for input list x of real numbers:

i. The sample mean; for a list G of = values, the sample mean < is

<(G)= 1
=

=−1∑
8=0

G8 .

ii. The sample variance; the sample variance B2 is

B2(G)= 1
= − 1

=−1∑
8=0

(G8 −<(G))2 .

https://engineering-computing.ricopic.one/ys

24 Chapter 2

iii. The sample standard deviation; the sample standard deviation B is

B(G)=
√
B2(G).

iv. The median; the median " of a sorted list G of = numbers is value of
the list at index 8" = (= − 1)/2 (i.e., the middle index); more precisely,

"(G)=
{
G8" 8" is an integer
1
2

(
Gb8"c + Gd8"e

)
otherwise

where b·c is the floor function that rounds down and d·e is the ceiling
function that rounds up. So in the case that there is no middle index,
the mode is the mean of the two middle values.

The stats() function should return a dict with the keys "mean", "var",
"std", and "median" correspond to values for the computed sample mean,
variance, standard deviation, and median.

b. It demonstrates the stats() function works on three different lists of
numbers.

Solution 2.6 LINKYS The functional analysis is summarized in the block diagram of
figure S2.2.
Algorithms 2 to 6 show pseudocode for each function.

<(G)

var(G, <(G))

std(var(G))

median(G)

stats(G)

G
(numerical list)

H
(dictionary)

G

G

Figure S2.1. Functional analysis diagram.

Figure S2.2. Functional analysis diagram.

https://engineering-computing.ricopic.one/ys

The Structure, Style, and Design of Programs 25

Algorithm 2 stats() pseudocode

function stats(G)
mean_val←mean(G)
var_val← var(G,mean_val)
std_val← std(var_val)
med_val←median(G)
3←dictionary of mean_val, var_val, std_val, med_val
return 3

Algorithm 3 mean() pseudocode

functionmean(G)
B← sum(G) ⊲ Sum of elements
=← len(G) ⊲ Number of elements
return B/=

Algorithm 4 var() pseudocode

functionmean(G, <)
ifmean value < is not provided then

<←mean(G)
summand←[] ⊲ Initialize new list
for G8 ∈ G do

B←(G8 −<)2
Append B to summand

B← sum(summand)
=← len(summand)
return B/(= − 1)

Algorithm 5 std() pseudocode

function std(E) ⊲ E is the variance
return

√
E

26 Chapter 2

Algorithm 6 median() pseudocode

functionmedian(G)
G′← sort(G) ⊲ New, sorted list
=← len(G′)
8"←(= − 1)/2 ⊲ Nominal middle index
if 8" ∈Z (i.e., if it’s an integer) then

med_val← G′
8

else
Gdown← G′b8"c

⊲ Element from rounded-down index

Gup← G′d8"e
⊲ Element from rounded-up index

med_val←(Gdown + Gup)/2 ⊲Mean
return med_val

The following program meets the requirements:

""""Part of the Solution to Chapter 2 Problem YS"""
import math
from pprint import pprint

%% [markdown]
Introduction
The program will consist of the five functions identified in the
functional analysis diagram. The pseudocode for each function will
guide the writing of the functions. The functions are defined in
the following section and they are tested in the last section.
%% [markdown]
Function Definitions
%%
def mean(x: list) -> float:

"""Returns the mean of a numeric list x."""
s: float = sum(x) # Sum of items in list
n: int = len(x) # Number of elements in list
return s / n

def var(x: list, mean_val: float = None) -> float:
"""Returns the sample variance of x.
Will compute the mean if it isn't supplied
"""
if mean_val is None:

mean_val = mean()
summand = [] # Initialize the summand list
for xi in x:

summand.append((xi - mean_val) ** 2)
s = sum(summand)
n = len(summand)

The Structure, Style, and Design of Programs 27

return s / (n - 1)

def std(var_val: float) -> float:
"""Computes the standard deviation from the variance."""
return math.sqrt(var_val)

def median(x: list) -> float:
"""Returns the median of list x."""
x_s: list = sorted(x) # New list
n: int = len(x_s)
i_m: float = (n - 1) / 2.0 # Nominal middle index
if i_m.is_integer():

med_val = x[int(i_m)] # Middle value
else:

x_low = x[math.floor(i_m)]
x_high = x[math.ceil(i_m)]
med_val = (x_low + x_high) / 2 # Mean of middle values

return med_val

def stats(x: list) -> dict:
"""Returns a dict with the sample mean, variance,
standard deviation, and median.
"""
d = {}
d["mean"] = mean(x)
d["var"] = var(x, d["mean"])
d["std"] = std(d["var"])
d["median"] = median(x)
return d

%% [markdown]
Call Functions and Print
%%
test_lists = [

list(range(0, 11)),
[3.0, -1.0, 10.0, -33.0],
[1, 2, 3, 4, 5, 3],

]

for test_list in test_lists:
print(f"Stats for {test_list}:")
pprint(stats(test_list), width=1)

28 Chapter 2

This program prints the following to the console:

Stats for [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]:
{'mean': 5.0,
'median': 5,
'std': 3.3166247903554,
'var': 11.0}

Stats for [3.0, -1.0, 10.0, -33.0]:
{'mean': -5.25,
'median': 4.5,
'std': 19.05037182489273,
'var': 362.9166666666667}

Stats for [1, 2, 3, 4, 5, 3]:
{'mean': 3.0,
'median': 3.5,
'std': 1.4142135623730951,
'var': 2.0}

